LUNCHEON MEETING-FEBRUARY 27, 1985

JAMES M. COLEMAN—Biographical Sketch

James M. Coleman received his B.S. (1958), M.S. (1962) and Ph.D. (1966) degrees from Louisiana State University. He joined the Coastal Studies Institute at LSU in 1960 as a Field Supervisor and then joined the LSU faculty in 1966 as an Assistant Professor. He has subsequently held positions of Associate Professor (1969-74), Professor (1975-80) and is now a Boyd Professor at LSU. He was named Assistant Director of the Coastal

Studies Institute in 1971 and was named Director in 1975, a position he holds at present.

Dr. Coleman has contributed to or personally authored over 100 publications. He has been awarded research contracts from the Office of Naval Research, USGS, Shell, University of Texas, ARCO, Gulf, and the Industrial Association Research Program. He was also selected to serve as co-chief scientist of DSDP Leg 96, which is the subject of his topic for the February 27th meeting.

Dr. Coleman was awarded the A.I. Levorson Award from the AAPG and the Best Paper Award from the Gulf Coast Association of Geological Societies in 1973, and received the second place award in 1974. He served as an AAPG Distinguished Lecturer from 1976-78, was named as an LSU Distinuished Lecturer in 1976 and a Shell Oil Distinguished Lecturer in 1979. He received the LSU Distinguished Research Master Award in 1976 and the Shepard Award for Excellence in Marine Geology in 1980 from the SEPM. Dr. Coleman was named to the Gulf Universities Research Consortium Program Development Council in 1980, the Gulf Coast SEPM Research Council in 1980, American Men and Women of Science in 1976, and Who's Who in America in 1984. He annually conducts educational seminars for the AAPG and a number of major oil companies.

Dr. Coleman is a member of the International Association for Sedimentology and serves on the Committee on Sedimentary Structure Nomenclature. He is also a member of the AAPG, the Geological Society of America, and the Gulf Coast SEPM. Dr. Coleman serves as a consulting editor for "Transaction of the Royal Society of Edinburgh", and he is Earth Science Associate Editor for Geo-Marine Letters.

DEEP-WATER SANDS OF GULF OF MEXICO: RESULTS OF DSDP LEG 96

J. M. Coleman, A. H. Bouma, and Leg 96 Scientific Party

Sedimentologic, paleontologic, geochemical, and geotechnical studies were conducted on cores drilled at nine sites (Table 1) on the Mississippi Fan during Deep Sea Drilling Project Leg 96. Together with seismic and well log data, these studies enable us to develop a number of depositional facies within an overall fan lobe model. The central middle fan channel of the youngest Mississippi fan lobe was an effective conduit for the transport of coarse-grained material; only clays and minor amounts of silt spilled over the channel margins. The channel-fill deposit is basically a fining-upward sequence, commencing with coarse-grained sands and gravels, which are overlain by sands, sandy-silty muds, and muds. The basal coarse-grained sediment interval is approximately 134 m thick. The swale deposits and underlying overbank deposits adjacent to the meandering channel, as well as the marginal overbank deposits, are characterized by fine-grained turbidites and hemipelagics. Both sites, basically, contain a minor coarsening-upward sequence.

The lower fan in the area, where the channel shifts position frequently, shows alternating sequences of channel-fill, levee, and overbank deposits. Sediments near the channel terminus have coarsening-upward sequences (i.e., channel-mouth depositional lobes) and contain 47% to 65% net sand.

Most of the sparse microfauna in both sands and muds are benthic species characteristic of inner and middle neritic origin. Traces of biogenic methane and hydrocarbon were found in underlying lobes, but not in the youngest lobe. All sediments are underconsolidated as a result of the extremely high accumulation rates of 2.0 to 12.0 m/1000 yr.

Table 1 Leg 96 Drilling Sites

Site No.	Latitude	Longitude	Water Depth (m)	Penetration (m)
614	25°04.08'N	86°08.21 W	3314	150.3
615	25°13.30'N	85°59.50'W	3268	523.2
616	26°47.70'N	86°52.80'W	2993	371.0
617	26°41.90'N	88°31.70°W	2467	191.2
620	26°50.12'N	88°22.25°W	2602	422.7
621	26°43.86'N	88°29.76'W	2485	214.8
622	26°48.41'N	88°28.82'W	2495	208.0
623	25°46.09'N	86°13.84"W	3188	202.2
624	25°45.24'N	86°16.63°W	3198	190.4