Geochemistry of the Lower Crust Beneath the Eastern Meguma Zone, Nova Scotia

G.W. Eberz, D.B. Clarke
Department of Geology, Dalhousie University, Halifax, Nova Scotia B3H 2J5
A.K. Chatterjee and P.S. Giles
Nova Scotia Department of Mines and Energy, P.O. Box 1087, Halifax, Nova Scotia B3H 2J5

Xenoliths occurring in a spessartite dyke near Tangier (Nova Scotia) can be subdivided into two distinct mineralogical groups. Group A includes sapphirine-orthopyroxene and garnet-orthopyroxene granulites and most of them have abundant graphite, aluminosilicates and spinel. Group B xenoliths are devoid of graphite and aluminosilicates and include two-pyroxene, orthopyroxene-amphibole and clinopyroxene-amphibole assemblages. Both groups give peak P-T estimates of 12-14 kb and 1000-1100°C.

Group A xenoliths have high Al₂O₃ (x=22.5 wt. %) but very variable SiO₂ (46-67 wt. %). They have an overall major-element chemistry within the range of average shale but contrast sharply with Meguma Zone, low grade metasediments. Most Group A xenoliths are corundum-normative (3.5-18%), but some have normative diopside (aluminosilicate free) indicating a more calcareous protolith for the latter. Group B xenoliths have a narrow range in silica (50.46-51.31 wt. %) but a wide range in CaO (6.93-12.80 wt. %) and MgO (7.70-16.73 wt. %). Together with the high and variable compatible trace element abundances of Cr (x=923) and Ni (x=122) this reflects extensive crystal accumulation (cpx, opx, amph) of the igneous (basaltic) protolith. The K/Rb ratios for both groups (x=321) are similar to average Archean crust (approx. 300). Some trace element ratios, such as Th/U and Zr/Nb, are very similar for both groups, averaging 3.5 and 14 respectively. However, they can be clearly distinguished by their Ti/V and Ti/Zr ratios (Group A: Ti/Zr<40, Ti/V>25 and Group B: Ti/Zr>40, Ti/V<25).

Both groups show LREE-enriched patterns but the total of 12 REEs is characteristically high for Group A xenoliths (106-248 ppm) when compared to Group B xenoliths (47-84 ppm). None of the REE patterns show positive Eu anomalies as is typical for the meta-tonalite-trondjemite-granodiorite suite of regional granulite terrains.

The most remarkable feature of both xenolith groups is their high abundance of LIL elements, compared to rocks from other granulite-facies terrains. This rules out significant melt extraction or loss of LIL elements during CO₂ flushing or prograde dehydration reactions. The lower crustal xenoliths are therefore unlikely source rock candidates for the Devonian-Carboniferous granitoids of Nova Scotia.

We infer that the lower crust beneath the Meguma Zone is composed of shales, calcareous shales, mafic cumulates and gabbros.