Reconciliation and implications of SEM-EDS microscopy and fluid inclusion chemistry for the origin of the Meguma gold deposits, Nova Scotia Daniel J. Kontak - Department of Earth Sciences, Laurentian University, Sudbury, Ontario P3E 2C6, Canada 550 mounds, indicates distinct fluid types in terms of Na:K:Ca occur within (e.g., Beaver Dam, Caribou) and among deposits (18 deposits studied). These data support results of earlier LA ICP-MS analysis of Fls. The new observations and data are reconciled with previous work and ideas for the Meguma deposits as follows: (1) more than one fluid type, hence source and/or process, may be involved in vein formation; (2) some metals, including Au, and volatiles (S, C) may originate within carbonaceous layers in the local strata, but their extent and abundance is not constrained; (3) the biogenic signature for vein sulfides (δ34S) and carbonates (δ13C), which is globally anomalous, are consistent with the chemistry of the carbonaceous layers reported.