Morphological examination of the NP-28 submarine channel-fan complex in the Amundsen Basin

KAI BOGGI ID1 AND DAVID MOSHER2

1. Department of Earth Sciences, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada <<u>Kai.Boggild@Dal.Ca</u>>

2. Department of Earth Sciences, Center for Coastal and Ocean Mapping, University of New Hampshire, Durham, New

Hampshire 03824, USA

The NP-28 channel is a deep-sea turbidite channel supplying sediment to a submarine fan at latitudes between 85 and 90 N. The

channel represents the northernmost submarine channel on Earth and was originally identified in 2004 using the International

Bathymetric Chart of the Arctic Ocean dataset and three seismic profiles. Emerging hypotheses concerning the behaviour of high

latitude submarine channels predict that straighter geometries may dominate at high latitudes due to the increased Coriolis forcing of

sediment-laden currents. Sedimentation patterns within the NP-28 channel share similarities with experimental tabletop studies in

which the location of the downstream velocity maximum is deflected at low Rossby numbers. This research examines the updated

morphology of the channel and evaluates it in the context of these hypotheses.

Initial interpretations of the channel described an aggradational channel with consistent right-hand levee asymmetry stretching from the

Klenova Valley into the Amundsen Basin. A compilation of multibeam echosounder data acquired in the past decade provides the first

partial view of the plan geometry of the channel path, revealing a low-gradient, low-sinuosity channel running for more than 450 km

parallel to the margin of Lomonosov Ridge. High-resolution 3.5 kHz seismic profiles across the channel-levee complex reveal turbidite

system elements including confined levee terraces, tapered overbank stratigraphy and low-amplitude sediment waves. Overbank

sedimentation on the right-hand side of the channel resulted in construction of large drift-like levee deposits which represent a

substantial source of Quaternary basin fill in the Amundsen Basin.