form a central graben area. Production is obtained at an average depth of 10,135 to 10,545 feet from the Tuscaloosa formation of Upper Cretaceous age. Accumulation is controlled by structure and the lenticularity of the producing sands. The faulting present does not affect the accumulation.

After the slow start the field was developed rapidly due to early expiration of the leases. It was noted during the early production history that the reservoir pressures were declining rapidly. This led to a study of the reservoir conditions that resulted in a voluntary unitization agreement among the various operators and royalty owners for a pressure maintenance program to prolong the life of the field and to increase the ultimate recovery.


The LaGrange field, Adams County, Mississippi, is the largest field producing from the Wilcox in Mississippi. Originally a Tuscaloosa field opener in February, 1946, the discovery well was plugged back and recompleted as a Wilcox producer in August of the same year. Production is being recovered from several sands of the middle Wilcox at a depth of approximately 6,200 feet. In its short life, the field has been extended to encompass 3,000 acres. As of January 1, 1949, it had 99 producing wells (including 10 twins) and had a cumulative production of more than 3 million barrels. Daily runs are in excess of 11,000 barrels. With the field still not completely defined, eventual production is estimated in excess of 15 million barrels.

The field is located on the flank of the Mississippi basin. The local structure is an elongate west of south-trending anticlinal nose. Although closure is developed on a series of nodes along the axis of the fold, reservoir traps are, in good part, controlled by stratigraphic conditions. Discovery of the field resulted from combination of geophysical and subsurface information.


The paper discusses the occurrence of the genus Chojfatella in deep wells in south Florida and at other localities in the Atlantic and Gulf Coastal Plain of the United States. The limited stratigraphic range of the genus and its value for correlation are mentioned and a few diagnostic structural features are illustrated with plate figures. The ecology of Chojfatella is suggested, and occurrences in other portions of the western hemisphere are listed.


The completion of field work in Citrus and Levy counties, Florida, has made it possible to redefine the "Ocala limestone" and restrict the term to the upper Jackson upper Eocene; to erect a new formation containing two members that compose the lower Jackson group; and to provide exact horizons in the Jackson on which structural maps can be accurately drawn. These shallow beds are usually reached by water wells and are readily accessible for exploratory drilling. The beds are probably the most distinctive in Florida and are divisible both lithologically and paleontologically.

A distinct unconformity is present at the base of the Jackson group in the area and is recognized by gravel beds in the base of the Jackson and by overlap of eroded middle Eocene limestone.

The division and correlation of the Jackson group have been recognized in approximately 600 wells and a structural map has been constructed, drawn on the top of the lower member of the lower Jackson group. Three well developed shear zones have been recognized. These faults have been dated as probably pre-Miocene, post-Oligocene and isopachs of the Miocene indicate filling of grabens and overlaps of areas standing high during the Miocene. The Hawthorn formation of lower Miocene age appears to be equivalent to the phosphate fixation period during which time the hard rock phosphate of Florida was formed—the Hawthorn is thus correlated with beds included in the Alachua formation, formerly thought to be Pliocene.


In the southeastern Coastal Plain, information is available on 60 widely scattered oil test wells that have been drilled through the Cenozoic and Mesozoic deposits into older rocks representing a wide variety of types.

In Florida and Georgia these buried pre-Mesozoic rocks fall in three general classifications which are:

1 Published by permission of the director of the U. S. Geological Survey, and the Sun Oil Company.
2 Published by permission of the Florida Geological Survey.
3 Published by permission of the director of the U. S. Geological Survey.