The slide was along the bedding plane in the eastern two thirds of the area. In the western third of the area the arcuate leading edge cut up section along the western and southwestern flank of Coyanosa and continued along the sea floor to just beyond Rojo Caballos. Rapid emplacement is implicit from the westerly thin ning wedge of detritus which was churned up by the toe of the slide as it traversed the sea floor.

Alternate interpretations to submarine sliding require almost inexplicable faulting and erosion to account for the observed phenomena.

HALBOUTY, MICHEL T., Consulting Geologist and Petroleum Engineer, Houston, TX 77027
RATIONALE FOR DELIBERATE PURSUIT OF STRATIGRAPHIC AND PALEOGEOGEMORPHIC TRAPS

It is obvious that the results of exploratory onshore efforts in the last decade—which have been directed toward structural anomalies—have not been generally successful. Yet, the industry continues to neglect the purposeful search for stratigraphic and paleogeomorphic traps even though some of the largest oil and gas fields in the world are in such reservoirs. As explorationists it is our responsibility to originate new ideas, new methods, and arrive at a decisive “breakthrough” of some kind to discover these so-called subtle traps. Because these traps occur in a great variety of possible geologic environments—such as relay shorelines, channels, deltas, lagoons, river and stream beds, buried overlaps and onlaps, and in other ancient topography—ranging in size from inconsequential to supergiant—the industry is shirking its duty to the nation if it does not embark immediately on an extensive and concentrated effort to focus all of its exploration know-how toward searching for and finding the large petroleum reserves which surely exist in these subtle traps.

HALBOUTY, MICHEL T., Consulting Geologist and Petroleum Engineer, Houston, TX 77027, and ROBERT H. DOTT, SR., and A. A. MEYERHOFF, Petroleum Engineer, Houston, TX 77027

GEOLGY AND ENVIRONMENTAL FACTORS AFFECTING GIANT FIELDS

At least 187 giant oil fields and 79 giant gas fields are known in the world today. Giant fields are those that contain over 500 million bbl of recoverable oil or 3.5 Tcf or more of recoverable gas, or an equivalent combination of gas and liquids which has a calorific value equivalent to 500 million bbl of oil. Altogether these fields contain an estimated, minimum ultimate recoverable reserve of 638.77 billion bbl of oil and 1,180 Tcf of gas or approximately 30–40% of the total known world recoverable gas. Most giant fields (190 = 71%) are in the Eastern Hemisphere; only 76 (29%) are in the Western Hemisphere; 81% of those in the Eastern Hemisphere (58% of the world’s total) are in a U-shaped belt 10,000 km long and 750–1,300 km wide that extends from Algeria to the Arctic Ocean at the longitude of the Polar Urals.

Giant accumulations show a distinct preference for certain geologic environments. Platform, semiplatform (parageosyncline), and platform-margin areas contain 83% (221 fields) of all giants; only 17% (45 fields) are in other geologic environments (e.g., fold belts, actively subsiding grabens, etc.). The numerous giant fields in platform-related areas suggest that giant fields are more likely to be preserved in tectonically stable environments.

Of the reserves in giant oil fields, 58% are in sandstone and 42% are in carbonate reservoirs (an unusually large percentage of carbonate reservoirs are in the Middle East); of the reserves in giant gas fields 75% are in sandstone and only 25% in carbonate reservoirs. A total of 29% of the oil and 10% of the gas are in Tertiary strata; 63% of the oil and 65% of the gas are in Mesozoic beds; and 8% of the oil and 25% of the gas are in Paleozoic reservoirs. The abrupt increase in the number of giant fields in Mississippian and younger beds very possibly reflects the sudden proliferation during Late Devonian and Mississippian times of plant life in the terrestrial and, particularly, in marine environments. However, giant accumulations are not restricted to marine sediments. Of the 266 giant fields 6% (5 oil fields, 10 gas fields) are in rocks of nonmarine origin and 15% contain major oil and/or gas reserves of probable nonmarine origin.

Giant hydrocarbon accumulations require (1) abundant organic source materials; (2) depositional and postdepositional environments suitable for accumulating, preserving, and converting the organic materials into mobile hydrocarbons; (3) efficient carrier beds; (4) voluminous and/or high-quality reservoir rocks; and (5) a giant trap, ideally syndepositional. Unconformities, though important in some fields, are not important in most. Geothermal gradient can be of importance in controlling the types of hydrocarbons present and their degree of mobility during migration.

HAY, WILLIAM W., Dept. Geol., Univ. Illinois, Urbana, IL 61801, and Rosenstiel School of Marine and Atmospheric Sci., Univ. Miami, Miami, FL 33149

GEOLOGIC HISTORY OF OCEANS: INTRODUCTION

Only a few years have passed since the concepts of the permanence of continents and ocean basins and the stability of the oceans were widely accepted, and the notion of continental drift was regarded as heresy. Since inception of the programs of deep ocean coring, however, a major new body of data has appeared. Many of the new observations are in conflict with traditional ideas. It has become evident that the oceans have a fascinating and complex history, and the history of ocean chemistry appears to be inextricably interwoven with the development of oceanic organisms. It had been tacitly assumed by many geologists that the oceans constituted a massive buffer system, stabilizing climate and affecting geochemical processes on the surface of the earth and in its atmosphere. Now deep-sea sediments are known to bear a record of dramatic changes, some local, some of worldwide significance. It is the purpose of this symposium to explore new ideas which are being generated, and to provide a synthesis of the present state of knowledge concerning the history of the oceans.

HAYS, JAMES D., Lamont-Doherty Geol. Observ., Columbia Univ., Palisades, NY 10964

HISTORY OF BIOMERIC SILICA IN DEEP SEA

The primary components of biogenic silica in deep sea sediments are the tests of diatoms and radiolarians. Their distribution and concentration in open ocean deep-sea sediments are strongly influenced by the productivity of the overlying water masses. In general, in deep-sea sediments far from land where masking by continental detritus is not an important factor, sediments rich in opaline silica overlay regions of strong