Metallic Mineral Resources of Antarctica—Development Far in Future

Metal deposits and occurrences have been found in rocks of most ages in many parts of Antarctica, and Gondwana reconstructions suggest that many others probably exist. However, relatively few deposits are known because ice covers about 96% of the continent and because detailed geologic mapping is sparse. In the Precambrian shield of East Antarctica, iron deposits are present as jaspilite strata and as magnetite in veins, pods, and disseminated in schist. The largest deposits are in the Prince Charles Mountains, where banded iron formation is as thick as 400 m and extends for 120 km. The presence of morainal jaspilite over large parts of the Antarctic Peninsula, and because detailed geologic mapping is sparse. In the Transantarctic Mountains, the stratiform Dufek gabbroic intrusion (Jurassic) may contain valuable metals, but the base of this intrusion—where metals are present as jaspilite strata and as magnetite in veins, pods, and disseminated in schist. The largest deposits are in the Prince Charles Mountains, where banded iron formation is as thick as 400 m and extends for 120 km. The presence of morainal jaspilite over large parts of the Precambrian shield of East Antarctica, iron deposits are present as jaspilite strata and as magnetite in veins, pods, and disseminated in schist. The largest deposits are in the Prince Charles Mountains, where banded iron formation is as thick as 400 m and extends for 120 km. The presence of morainal jaspilite over large parts of the Antarctic Peninsula, and because detailed geologic mapping is sparse. In the Transantarctic Mountains, the stratiform Dufek gabbroic intrusion (Jurassic) may contain valuable metals, but the base of this intrusion—where metals are present as jaspilite strata and as magnetite in veins, pods, and disseminated in schist. The largest deposits are in the Prince Charles Mountains, where banded iron formation is as thick as 400 m and extends for 120 km. The presence of morainal jaspilite over large parts of the Precambrian shield of East Antarctica, iron deposits are present as jaspilite strata and as magnetite in veins, pods, and disseminated in schist. The largest deposits are in the Prince Charles Mountains, where banded iron formation is as thick as 400 m and extends for 120 km. The presence of morainal jaspilite over large parts of the Antarctic Peninsula, and because detailed geologic mapping is sparse. In the Transantarctic Mountains, the stratiform Dufek gabbroic intrusion (Jurassic) may contain valuable metals, but the base of this intrusion—where metals are present as jaspilite strata and as magnetite in veins, pods, and disseminated in schist. The largest deposits are in the Prince Charles Mountains, where banded iron formation is as thick as 400 m and extends for 120 km. The presence of morainal jaspilite over large parts of the Precambrian shield of East Antarctica, iron deposits are present as jaspilite strata and as magnetite in veins, pods, and disseminated in schist. The largest deposits are in the Prince Charles Mountains, where banded iron formation is as thick as 400 m and extends for 120 km. The presence of morainal jaspilite over large parts of the Antarctic Peninsula, and because detailed geologic mapping is sparse. In the Transantarctic Mountains, the stratiform Dufek gabbroic intrusion (Jurassic) may contain valuable metals, but the base of this intrusion—where metals are present as jaspilite strata and as magnetite in veins, pods, and disseminated in schist. The largest deposits are in the Prince Charles Mountains, where banded iron formation is as thick as 400 m and extends for 120 km. The presence of morainal jaspilite over large parts of the Antarctic Peninsula, and because detailed geologic mapping is sparse. In the Transantarctic Mountains, the stratiform Dufek gabbroic intrusion (Jurassic) may contain valuable metals, but the base of this intrusion—where metals are present as jaspilite strata and as magnetite in veins, pods, and disseminated in schist. The largest deposits are in the Prince Charles Mountains, where banded iron formation is as thick as 400 m and extends for 120 km. The presence of morainal jaspilite over large parts of the Antarctic Peninsula, and because detailed geologic mapping is sparse. In the Transantarctic Mountains, the stratiform Dufek gabbroic intrusion (Jurassic) may contain valuable metals, but the base of this intrusion—where metals are present as jaspilite strata and as magnetite in veins, pods, and disseminated in schist. The largest deposits are in the Prince Charles Mountains, where banded iron formation is as thick as 400 m and extends for 120 km. The presence of morainal jaspilite over large parts of the Antarctic Peninsula, and because detailed geologic mapping is sparse. In the Transantarctic Mountains, the stratiform Dufek gabbroic intrusion (Jurassic) may contain valuable metals, but the base of this intrusion—where metals are present as jaspilite strata and as magnetite in veins, pods, and disseminated in schist. The largest deposits are in the Prince Charles Mountains, where banded iron formation is as thick as 400 m and extends for 120 km. The presence of morainal jaspilite over large parts of the Antarctic Peninsula, and because detailed geologic mapping is sparse. In the Transantarctic Mountains, the stratiform Dufek gabbroic intrusion (Jurassic) may contain valuable metals, but the base of this intrusion—where metals are present as jaspilite strata and as magnetite in veins, pods, and disseminated in schist. The largest deposits are in the Prince Charles Mountains, where banded iron formation is as thick as 400 m and extends for 120 km. The presence of morainal jaspilite over large parts of the Antarctic Peninsula, and because detailed geologic mapping is sparse. In the Transantarctic Mountains, the stratiform Dufek gabbroic intrusion (Jurassic) may contain valuable metals, but the base of this intrusion—where metals are present as jaspilite strata and as magnetite in veins, pods, and disseminated in schist. The largest deposits are in the Prince Charles Mountains, where banded iron formation is as thick as 400 m and extends for 120 km. The presence of morainal jaspilite over large parts of the Antarctic Peninsula, and because detailed geologic mapping is sparse. In the Transantarctic Mountains, the stratiform Dufek gabbroic intrusion (Jurassic) may contain valuable metals, but the base of this intrusion—where metals are present as jaspilite strata and as magnetite in veins, pods, and disseminated in schist. The largest deposits are in the Prince Charles Mountains, where banded iron formation is as thick as 400 m and extends for 120 km. The presence of morainal jaspilite over large parts of the Antarctic Peninsula, and because detailed geologic mapping is sparse. In the Transantarctic Mountains, the stratiform Dufek gabbroic intrusion (Jurassic) may contain valuable metals, but the base of this intrusion—where metals are present as jaspilite strata and as magnetite in veins, pods, and disseminated in schist. The largest deposits are in the Prince Charles Mountains, where banded iron formation is as thick as 400 m and extends for 120 km. The presence of morainal jaspilite over large parts of the Antarctic Peninsula, and because detailed geologic mapping is sparse. In the Transantarctic Mountains, the stratiform Dufek gabbroic intrusion (Jurassic) may contain valuable metals, but the base of this intrusion—where metals are present as jaspilite strata and as magnetite in veins, pods, and disseminated in schist. The largest deposits are in the Prince Charles Mountains, where banded iron formation is as thick as 400 m and extends for 120 km. The presence of morainal jaspilite over large parts of the Antarctic Peninsula, and because detailed geologic mapping is sparse. In the Transantarctic Mountains, the stratiform Dufek gabbroic intrusion (Jurassic) may contain valuable metals, but the base of this intrusion—where metals are present as jaspilite strata and as magnetit...