The Ratcliffe interval within the Williston basin in North Dakota is included in the Mississippian Madison Group. It is an informal stratigraphic subsurface unit which includes parts of the upper Mission Canyon and lower Charles Formations. Deposition of the Ratcliffe sediments occurred in an open to progressively restricted marine environment along the eastern margin of the basin. Six facies have been recognized in the study area. These are the: (1) brachiopod-bryozoan-echinoderm packstone/wackestone facies; (2) peloid-oolite packstone/wackestone facies; (3) ostracod-foraminifer wackestone facies; (4) laminated mudstone/wackestone facies; (5) anhydrite-dolomite mudstone facies; and the (6) organic quartz siltstone facies. Oil found within the Ratcliffe interval is usually associated with the peloid-oolite packstone facies. Some moldic porosity has developed by solutioning. Dolomitization has increased intercrystalline porosity. Dolomitized areas commonly are capped by less porous facies making good potential stratigraphic traps. Formation of traps and reservoir rock is highly dependent on porosity and permeability and also on the amount of diagenesis, especially secondary anhydrite, associated with the sediments.

CENTURY, J. R., Independent, Calgary, Alberta, Canada

Production Analysis in Exploration: Stettler Field Extension, Alberta

In October 1977, a significant extension to the 50,000,000 bbl Stettler D-3 and D-2 reef oil field was made 28 years after the initial 1949 discovery and 17 years after the field was considered fully delineated by exploratory and development drilling. The Stettler field is among a number of well-documented Upper Devonian reef fields and was seismically and geologically mapped before and after discovery.

The potential of some Alberta reef field extensions became evident with the new oil economic reality following the Arab oil embargo of 1973. Attention was given to the structurally downdip, downdip, south and southwest closing rim of the Stettler dolomitized D-3 atoll during 1977-79 by the drilling of seven successful oil wells beginning with the Geneva Resources 6-17-38-20 W4 test on a prospect created by the speaker.

From November 1977 to January 1, 1981, 122,869 bbl of crude were produced from the 6-17 well at an average rate of 108 bbl oil/day during that period. At least 1,000,000 additional barrels of primary Stettler oil will be produced as a result of these recent extension wells.

The key to this successful prospect was the lead derived from using computer lists and decline curves of production data. By 1977, over 400,000 bbl of oil and less than 20,000 bbl of salt water had been produced from the 1960 Tenneco CPR 12-17-38-20 W4 well. This location was believed by industry to have been close to the D-3 reef oil/water contact with an evaporite sequence in the upper Mission Canyon and lower Charles Formations. The Stettler field is among a number of well-documented Upper Devonian reef fields and was seismically and geologically mapped before and after discovery.

The structural change of disordered to ordered interstratification of mixed-layer chlorite/saponite occurs in the temperature range of 60 to 80°C, and at vitrinite reflectance values around 0.7. Increasing substitution of silicon by aluminum in tetrahedral sites is the major chemical change accompanying transformation of saponite to chlorite via corrensite.

Material balance calculations indicate that sandstones lose less than 2% K +, which probably enters interstratified shales, and gain less than 3% H 2 O, H +, and CO 2 during burial diagenesis. Therefore, the burial pathway of Brazilian sandstone of western Oregon are a model example of pervasive diagenesis in volcanic arenites, which extend over a full range of environments: delta, shelf, slope, and basin. Although younger Eocene units in Oregon prove to be good reservoir rocks, the Floumoy and Tyee lack porosity. This is due to fore-arc basin burial and subsequent mechanical and chemical diagenesis.

Evaluation of the diagenetic phases indicate deep burial and compaction at an early stage. Unstable volcanic rock fragments and plagioclase grains from all environments show alteration to mixed-layer clays and laumontite, making them more susceptible to mechanical plastic deformation.

Cementation and replacement were most common in coarse-grained detrital and shelf sands, where the depositional porosity was high. An early stage of calcite cementation preserved open framework-supported textures in spherical concretions. A second stage of mixed-layer clays formed cement rims. Clinoptilolite filled remaining pore space. Locally, these two phases are reversed in Floumoy sands. Rare fractures were filled by stilbite. During a late stage, calcite replaced clay rims and zeolites, or filled remaining pores. In other samples, pervasive laumontite, together with minor clays, tightly cemented the coarse-grained sandstones.

Slope and basin sandstones are finer grained and contain more matrix than coarse-grained sandstones. Original composition, grain size, and original porosity (a function of depositional setting) controlled diagenetic development. These deeper water sandstones show some clay and calcite cements, but are generally lacking zeolite cements.

CHANG, HUNG K., PETROBRAS, Rio do Janeiro, Brazil, and FRED T. MACKENZIE,* Northwestern Univ., Evanston, IL, and Univ. Hawaii, Honolulu, HI

Mineral Reaction Pathways and Mass Transfer in Sandstone-Shale Sequences, Brazil

The major purpose of this study is to describe and quantify mineral reactions, reaction pathways, and mass transfer accompanying burial of passive margin sandstone-shale sequences, offshore Brazil. Four basins were investigated, encompassing a range of sandstone-shale compositions. Because these basins have similar geologic histories, the effect of original detrital mineralogy on diagenetic products could be ascertained. Standard light microscopy, X-ray diffraction, EM, SEM, and isotopic and chemical analyses provided the basis for interpretation of mineralogy, texture, and diagenetic reactions.

The initial mineral composition of the sediments was a major control of diagenetic products. Arkose and lithic arkose are the dominant sandstone types in these basins. Dioctahedral clay minerals, chlorite, and quartz characterize arkoses, whereas trioctahedral clays (saponite and corrensite) and zeolites are found in lithic sandstones. Dioctahedral smectite-rich shales exhibit the classical smectite/illite to illite burial pattern. However, mafic, trioctahedral clay-rich shales show a burial sequence of saponite to chlorite/saponite mixed-layer, a progressive increase of chlorite-rich phases with increasing burial depth.

The structural change of disordered to ordered interstratification of mixed-layer chlorite/saponite occurs in the temperature range of 60 to 80°C, and at vitrinite reflectance values around 0.7. Increasing substitution of silicon by aluminum in tetrahedral sites is the major chemical change accompanying transformation of saponite to chlorite via corrensite.

Material balance calculations indicate that sandstones lose less than 2% K+, which probably enters interstratified shales, and gain less than 3% H2O, H+, and CO2 during burial diagenesis. Therefore, the burial pathway of Brazilian sandstone