 Philippine energy policy for the 80s will tend to follow the
general directions established in the mid-70s. Its application,
however, should reflect the realities of this decade as well as the
progress achieved and experience gained over the past several
years.

The Philippines, traditionally relying on oil for 95% of its
commercial energy requirements, considers this fuel to be too
expensive for meeting the growing energy demand of mass sec­tors of the economy. Accordingly, the country, since 1974, has
embarked on a policy that: (a) promotes judicious and efficient
use of energy through a responsive pricing policy and a package
of fiscal incentives; (b) reduces oil dependence in favor of more
economical and preferably indigenous alternatives.

Supporting this dual policy thrust, the government has played
a catalytic role through selective investments, enabling legisla­
tion, national energy policy planning, and coordination of pro­
gram execution. The vigorous enlistment of foreign and private
sector investment in upstream resource development continues
to play a role.

By 1981, the implementation of aforementioned energy policy
initiatives had resulted in a decline in the country's dependence
on imported oil, from a high of 96% in the mid-70s, to 79%.
Energy consumption growth rates after 1974 have been contain­
ed, on the average, to levels below real economic growth
movements.

In the near future, the energy investment program targets fur­
ther reduction of imported oil dependence to 43% by 1986 on
the strength of projects that are now either under construction
or committed.

While the 70s presented general mobilization challenges,
higher real costs of money and more difficult access to foreign
exchange dominated financing are expected in the 80s.

In Philippine energy sub-sectors, policy application needs to
recognize specific market conditions and the accomplishments
to date.

The value of oil as foreign exchange earning or expenditure
prompts policymakers to maintain an aggressive oil exploration
posture. Though considerable success has been achieved in
geothermal exploitation and use, the country still needs to
displace around 2,000 MW of baseload of oil thermal plants, a
need advantageously fulfilled by geothermal systems. On an­
other front, coal policy is expected to heavily favor the
development of domestic production. Projected demand for
coal for the next 6 years indicates substantial import require­
ments, though prospects of increasing indigenous reserves
continue to be favorable.

The country continues to face challenges in the electric power
industry, biomass energy development, and energy pricing.
Policy options in these instances have been developed, but it is
clear that time is needed to reach a satisfactory state of affairs.

DEL ROSARIO, ANTONIO V., Ministry of Energy, Republic
of Philippines, Manila

Philippine Energy Policy for the 80s

DIXON, JOE S., Champlin Petroleum, Englewood, Colorado

Mesozoic-Cenozoic Tectonic Evolution of Western North
America—Alternative to the Orocline

A time-lapse sequence for the Lower Jurassic of North
America—Siberia positions is used, geared to Mid-Atlantic open­ing rates and pole of rotation, to show a possible linkage be­tween the Pacific and Arctic Oceans. With a pervasive and long­lasting right lateral movement on all terranes west of the Rocky
Mountain Trench (Tintina system), one can perceive Alaska, Yukon, British Columbia, and the western states as a complex
of transported microplates joined by transform faults and
sutures. The modification of these boundaries and the creation
of structural salients in the northern Cordillera are credited to
a lower Tertiary collision of the Alaskan Brooks block and
Chukotka with the eastward moving Kolyma shield complex.
The concept introduces a possible linkage between the extinct
Kula-Farallon Ridge and the Alpha Cordillera and credits
spreading within the Arctic to Barents Shelf migration by
spreading away from Alaska, between the Nansen fracture zone
and the Taymyr trend.

The microplate fabrics of both Alaska and eastern Siberia
favor accretionary processes, with all blocks carried out of the
Pacific region or along the west edge of the North American
craton, rather than rifting away from Arctic Canada.

DOUTCH, H. F., Bur. Mineral Resources, Canberra City,
A.C.T., Australia

Status of Circum-Pacific Map Project—Southwest Quadrant,
Mid-1982

The Geographic and Plate-Tectonic Maps of the Circum­
Pacific Map Project, Southwest Quadrant, have already been
published. The Plate-Tectonic Map is a best guess for many
areas, because much remains unknown about spreading centers,
plate boundaries, and passive margin features.

Compilation of the Geologic Map is practically complete,
with modification of guidelines so that quadrant geology can be
adequately summarized. The fundamental geologic elements
within the Quadrant are fragments of Gondwanaland encircled
by oceanic crust and plate boundaries; passive margin-style
Mesozoic and Cenozoic deposits were added to the Gondwana
Paleozoic and Precambrian terrain while interactions at the
boundaries between the Pacific, Australia-India, and various
Asian Plates were producing other kinds of deposits. Units
hosting energy and mineral resources are also emphasized.

The concurrent draft compilation for the Quadrant Tectonic
Map directly complements the Geologic Map. The draft basic­
ly shows plate interiors and plate margins, each divided into
basement and cover rock areas. Major orogenies are emphasized
and detailed subdivision results in about 50 kinds of mostly
strato-tectonic units.

Drafts for the Quadrant Energy Resources Map are in pro­
gress, but little progress has been made on the Mineral
Resources Map. Most of the work on the Geodynamics Map is
the responsibility of project headquarters.

DEVINE, S. B., South Australian Oil and Gas Corp. Pty.,
North Adelaide, South Australia

Cooper Basin Gas Liquids and Crude Oil Development Project

Gas liquid and crude oil reserves have been proved in the
Cooper basin in the northeast sector of South Australia.

Engineering developments necessary to exploit these reserves
and bring them to market include Moomba field wells, a liquid
recovery plant, a 310-mi (500 km) pipeline from Moomba to
Stony Point and fractionation facilities at Stony Point. Markets
for the products to be sold—lpg, condensate, and crude
oil—have been determined.

A.C.T., Australia

STATUS OF CIRCUM-PACIFIC MAP PROJECT—SOUTHWEST QUADRANT, MID-1982