East Tintic section to the north, but differs notably from the Cambrian section of the Canyon Range allochthon, which closely parallels the House Range stratigraphy. Juxtaposition of two separate Cambrian packages is attributed to a major Cretaceous thrusting episode during the Sevier orogeny. The Canyon Range allochthon placed Precambrian and Cambrian rocks on top of Cambrian through Devonian rocks of the Pavan allochthon. Later detachment of the Pavan allochthon emplaced the Paleozoic section over the Mesozoic rocks farther east. Movement of the Pavan allochthon carried the Canyon Range allochthon "piggy-back." Folding of both allochthonous sheets occurred, and Precambrian klippen of the Canyon Range allochthon are preserved, in two major synclinal troughs. Miocene to Holocene block faulting elevated and the Paleozoic section over the Mesozoic rocks farther east. Movement of Cambrian rocks on top of Cambrian through Devonian rocks of the Sevier orogeny. The Canyon Range allochthon placed Precambrian and Cambrian packages is attributed to a major Cretaceous thrusting episode during the Sevier orogeny. The Canyon Range allochthon placed Precambrian and Cambrian packages is attributed to a major Cretaceous thrusting episode during the Sevier orogeny.

Flow testing of USP/TH-1 indicated the well would flow at 1,000 gpm (4,546 m³/day) with a maximum temperature of 175°F (79°C) occurring in the zone from 300 to 700 ft (90 to 215 m). Fluid production for space heating of the prison facilities took place during the winter of 1983-84. This production will give more data to refine the calculations of reservoir productivity and provide information on the economics of utilizing geothermal fluids for space heating.

MITCHELL, GARY C., Consulting Geologist, Denver, CO

Permo-Triassic of Northwestern Paradox Basin Area, Utah

The Moenkopi Formation contains estimates of over 1 billion bbl of oil in the northwestern part of the Paradox basin in Emery, Garfield, and Wayne Counties, Utah. The Moenkopi is comprised of four members. The basal unit, the Black Dragon Member, is the most variable member in thickness as a result of infilling topographic relief of the post-Pennsylvanian topography. The upper three units—the Sinbad, Torrey, and Moody Canyon Members, in ascending order—are principally marine deposits that thicken to the west. The distribution of the underlying Permian units appears to have controlled, in part, the deposition of the Black Dragon Member, with perhaps the Paradox evaporation of Pennsylvanian age adding to the control of the deposition. The Emery uplift did not influence deposition of the Moenkopi, and had ceased influencing deposition of units by the time the Permian White Rim was deposited.

The origin of the oils in the Moenkopi Formation is still open to debate. The writer believes that due to the presence of a high percentage of marine rocks, the tight and discontinuous nature of the reservoir rocks, and the character of the oils from the Moenkopi, the source rocks for the oils in the Moenkopi are contained within the Moenkopi Formation. Generation of hydrocarbons occurred in the areas near the accumulations with limited migration distances being necessary.

By combining surface and subsurface data on the underlying Permian units, the Moenkopi Formation, and the overlying Upper Triassic Chinle Formation, a more complete stratigraphic and depositional framework for the Moenkopi Formation is possible. The result is a better understanding of the surface accumulations and a better exploration strategy for subsurface accumulations.

MONTGOMERY, SCOTT L., Petroleum Information Corp., Denver, CO, and THOMAS R. LYONS, Independent, Albuquerque, NM

Kaiparowits Basin: An Old Frontier with New Potential

Situated in the western part of the Colorado Plateau in Utah, the Kaiparowits basin is one of the least explored of the major Rocky Mountain geologic provinces. The Kaiparowits is not a topographic but a stratigraphic basin that began as an early to middle Paleozoic oceanic embayment that stretched slightly east of the shallow shelf transitional hinge line. The full depositional history of the Kaiparowits area records the alternation of basinal sedimentation (early to middle Paleozoic), parts of the Permian, middle to late Mesozoic, and plateau uplift (late Paleozoic–early Mesozoic, late Tertiary–Holocene). Its present configuration is the result primarily of Laramide tectonism. In its overall tectonic aspects, the Kaiparowits describes a large triangular region in which, from west to east, the structural grain rotates about 70° from a northeast to northwest trend, with the intensity of deformation decreasing considerably.

To date, the only commercially productive area in the basin is the Upper Valley field, where hydrocarbons have been recovered primarily from dolomitized carbonates of the Kaibab Formation and Timpoeap Member of the Early Triassic Moenkopi Formation. Entrapment is within the strongly asymmetrical, doubly plunging Upper Valley anticline, where an active water drive has offset the oil pool onto the steeply dipping western limb. Live oil shows have been reported from nearly every pre-Jurassic formation in the region. Despite this, very few (170) exploratory wells have been drilled in this vast territory of nearly 22,000 mi² (57,000 km²).

Recently, however, a discovery of a different type has indicated the basin contains tremendous amounts of CO₂ gas reserves that could prove useful for both ongoing and future secondary recovery programs. At the very least, it is probable that most of the true potential of the Kaiparowits has thus far been overlooked, partially due to the rugged and isolated terrain. It is one of the least densely drilled provinces in the Rockies with one of the highest concentrations of probable source and reservoir rocks.

MOULTON, FLOYD C., Geological Consultant, Salt Lake City, UT

Oil and Gas Prospective Thrust Belts, West-Central North America

The prospective oil and gas producing thrust belt areas, now defined in west-central North America, should be expanded to include all shortened sequences of rocks where the over thrust (hanging wall) sequences have been emplaced over organic-rich rocks of all ages.

The western part of the much-publicized Sevier thrust belt should be considered where any other sequence is emplaced over younger organic-rich rocks, if the younger rocks were not pre-faults, or if all hydrocarbons were not expelled from them before thrusting occurred. Where overthrusting has emplaced older rocks over younger organic-rich rocks, the added overburden can cause initial or additional hydrocarbon generation and expulsion into available traps.

This thrust loading can cause hydrocarbon generation and expulsion on a selected basis where the depth of overburden is adequate with the migration path high as needed. The very deep organic-rich sediments can generate hydrocarbons by thrust loading, with the oil and gas migrating into the shallow immature sediment trap. Because of basin downwarping and sedimentation, the additional sediment load can cause initial or additional hydrocarbon generation.

The COCORP seismic reflection data from western Utah indicate major regional detachment (decollement) horizontal planes for structural shortening in most of the Basin and Range province of western North America.