WELSH, JOHN E., SR., Consultant, WxW Partners, Holladay, UT

Structural Complexities that Control Localization of Mississippian Shale-Generated Oil Prospects in Eastern Great Basin, Utah and Nevada

Mesozoic anticlinoria and synclinoria determine gross regional surface and subsurface distribution of Mississippian source rock shales. The original thicknesses of the shales are preserved only in the synclinoria. Over anticlinoria and on their flanks, shales were not deposited or were thinned by Late Jurassic to Early Cretaceous younger-over-older denudation thrusting. The Chainman decollement is a widespread stratigraphic zone of shearing, which, in extreme cases, caused the Triassic, Permian, and Pennsylvanian sequences to be rotated and dropped down in a systematic "chaos" upon the Devonian Guilmette Limestone (e.g., Ferguson Flat, Ferber Flat, Copper Flat). The Pilot, Joanna, Chainman, and lower Ely Formations were eliminated either entirely or partly by shearing. The Chainman decollement zone is intruded by 110 m.y.-old quartz monzonite and 35 m.y.-old quartz lattes within many mining district areas.

In the synclinoria areas, post-Oligocene block faulting has produced a mosaic of horsts and grabens. In many places the horst blocks, the Oligocene volcanics and the late Paleozoic sequence are removed by erosion, but in the graben blocks the entire Paleozoic and volcanic sequences are preserved in the subsurface. These graben blocks still contain complete subsurface sections of the Mississippian source rock shales. The block-faulted mosaic is outlined by an older northeast fault set that displaced the sub-Miocene volcanic terrane in the valleys and refracted through the Paleozoic rocks of the ranges. A younger set of tectonic faults outlines the geomorphology of the mountain blocks, bajadas, and playas. Geomorphology, gravity, and magnetic surveys help define the subaerial pattern of the fault mosaic.

WENRICH, KAREN J., and MILES L. SILBERMAN, U.S. Geol. Survey, Denver, CO

Potential Precious and Strategic Metals as By-Products of Uranium Mineralized Breccia Pipes in Northern Arizona

The development of caves within the Mississippian Redwall Limestone, accompanied by later upward stoping of overlying Paleozoic and Triassic rock, resulted in the formation of breccia pipes. Despite the depressed uranium market, some of these pipes are presently being mined for uranium. The pipes apparently formed prior to the Jurassic, as no pipes have been observed to penetrate Jurassic strata, and U-Pb determinations on the Hack I and II pipes by K. R. Ludwig suggest the uranium mineralization occurred around 200 Ma. No breccia faulted rock within pipes has been observed above its normal stratigraphic position, nor is any volcanic rock associated in space or time with these pipes. Mineralized rock transects any strata from the Redwall Limestone to the Triassic Chine Formation.

The collapse structures, believed to represent breccia pipes (many with exposed breccia), have been mapped. Those with gamma radiation exceeding 2.5 times background (57 pipes) have been sampled (155 samples). Of these oxidized surface samples collected solely on the basis of radioactivity, 20% have Ag exceeding 10 ppm, some with up to 1,150 ppm. The Copper Mountain Mine, located near Parachute Canyon on the Sanup Plateau has long been known for its "Au adit." Two samples of brecciated, oxidized sandstone with radioactivity exceeding 20 and 40 times background from this adit, and another sample of hematite, malachite, and chalcocite-impregnated sandstone from a higher level adit contained high concentrations of Au, Hg, Cd, and W, along with many elements commonly anomalous in mineralized breccia pipes from northern Arizona: Ag, As, Co, Cu, Mo, Ni, and Pb.

Preliminary oxygen isotope data suggest that samples mineralized strongly with Au and Ag have δ18O of 0.9 to 1.5 parts per thousand lighter than non-mineralized or less mineralized samples. The strongly developed epithermal suite (Au, Ag, Hg, and As) and δ18O depletion of originally detrital quartz is suggestive of at least moderately high temperature hydrothermal fluids involved in the mineralization of the Copper Mountain system.

CO and Ni concentrations in these breccia pipes are also of interest as a by-product of U; 10% of the above samples contain greater than 100 ppm CO (300 times average crustal abundance for sandstones) and 23% of the samples contain greater than 100 ppm Ni (50 times the average crustal abundance). The potential for economic recovery from breccia pipes of elements other than U, such as Ag, Au, Co, and Ni, should not be ignored, as their concentrations are even more enhanced in unoxi-zed samples.

WITTED, MIKE, and M. DANE PICARD, Univ. Utah, Salt Lake City, UT

Source Areas and Paleotectonic Implications of Upper Cretaceous Ohio Creek Member of Mesaverde Group, Piceance Basin, Colorado

The Ohio Creek member of the Mesaverde Group consists of massive or a series of massive conglomeratic sandstones deposited by several large braided stream systems that drained into the Piceance basin during Cenomanian-Maastrichtian time. Channel forms and internal bedding features are similar to those in the underlying Mesaverde. However, the Ohio Creek weathered to form a conspicuous white band above the brown sandstones of the Mesaverde and is further distinguished by an increase in pebble content. The distinctive color is due to extensive kaolinite weathering caused by post-Ohio Creek weathering.

Paleocurrent data, pebbles, and sandstone lithologies indicate at least two distinct source areas. A western sedimentary source area, probably central Utah, is indicated by deposits along the western margin of the basin. A contribution from the Uncompahgre highland area cannot be ruled out as yet. A sedimentary source area is also indicated to the east and/or southeast. The Sawatch Range area seems to have been the major contributor of coarse material, but a change in pebble lithology could be due to an influx from the southern Park Range. Approximate ages of the Ohio Creek member in published literature are derived from palynomorphs. Scattered data by separate workers indicate that the Ohio Creek is contemporaneous with the underlying Mesaverde, whereas the member could be as young as Middle Paleocene in the northeastern basin.

WILLIS, GRANT C., Utah Geological and Mineral Survey, Salt Lake City, UT

Geology and Energy Resources of Southwest Sego Canyon Quadrangle, Grand County, Utah

The Southwest Sego Canyon 7½-minute quadrangle is located in the Book Cliffs of eastern Utah and contains an exposed sequence of Upper Cretaceous through Eocene rocks. Exposed units include rocks from the upper Manos Shale through the undifferentiated Waskatch Formation and were deposited during the final regressive phase of the Manos sea. They represent shallow open-marine, wave-dominated deltas, and lower through upper floodplain depositional environments. Coal has been produced from seams up to 8 ft (2.5 m) thick, but reserves are largely undeveloped. Hydrocarbons have been produced from adjacent areas, and similar structural and stratigraphic traps may exist in the quadrangle. The area is crossed by low-profile, north-northwest-trending folds. The Thompson anticline is a faulted, salt-movement produced fold. The Cisco dome is caused by minor Laramide adjustment on the Uncompahgre fault. The quadrangle overlies the Paradox basin margin and may have deeper Paleozoic related traps.

Evidence of several structural events exists within the stratigraphic sequence. The Farrer Formation thickens into the nose of the Cisco dome and documents Cambrian movement on the Uncompahgre fault. Tuscher Formation current directions shift from east to north, indicating initiation of uplift on the San Rafael swell. Overlying conglomerate beds follow a 15-m.y. erosional hiatus and show sufficient uplift on the Uncompahgre fault to expose Mississippian rocks. Ratios of sandstone to shale in Waskatch Formation show derivation from the Uncompahgre uplift and a gradual reduction of the Uncompahgre highland.

WILLIS, GRANT C., Utah Geological and Mineral Survey, Salt Lake City, UT

Stratigraphy and Structural History of Salina Quadrangle, Sevier County, Utah

Detailed mapping in the Salina 7½-minute quadrangle has provided new data on the stratigraphic and structural history of the area. Exposed