About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract

AAPG Bulletin, V. 82 (1998), No. 5B (May 1998 Part B), P. 1037-1054.

The Evolution of Allochthonous Salt Along a Megaregional Profile Across the Northern Gulf of Mexico Basin1

Previous HitBarryTop C. McBride2

©Copyright 1998.  The American Association of Petroleum Geologists.  All Rights Reserved

1Manuscript received February 11, 1997; revised manuscript received October 20, 1997; final acceptance November 19, 1997.
2Energy and Minerals Applied Research Center, Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309-0250. Present address: HS Resources Inc., 1999 Broadway, Suite 3600, Denver, Colorado 80202.

Many thanks are in order to the following employees of Mobil Exploration and Producing U.S. Inc. for their loyal support during the initiation, compilation, and completion of this project: Arlene Anderson, Al Koch, Bob Hiseler, John Krueger, Sybil Calloway, Lori Denning, Allison Pease, Jim Carpenter, Catherine Langley, and Dave Walz. I also thank the following companies and their representatives for their tremendous support and input as part of the Gulf of Mexico research consortium at the University of Colorado: AGIP, Amoco, Anadarko, BHP, BP Exploration, Burlington Resources, Canadian Occidental, Chevron USA, CNG, Conoco, Enterprise, Exxon, Marathon, Mobil, Occidental, Pan Canadian, Pennzoil, Petrobras, Phillips Petroleum, Shell Oil Co., Texaco, Total, Union Pacific, Unocal, Halliburton, and PaleoData Inc. Software donations from CogniSeis Development Inc., GeoQuest, Landmark, Platte River Associates, and Zeh Graphics were essential for the success of this project and are very much appreciated. Special thanks to Bob Ratliff, Mark Rowan, Paul Weimer, Jim Geiser, Roy Kligfield, and Andy Pulham for their support, advice, discussions, training, and input during the development of this project. I appreciate reviews by Mike Hudec, Dick Buffler, and an anonymous reviewer. Acknowledgment is made to the Donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support for this research. 

ABSTRACT

Sequential restorations of a north-south megaregional cross section across the north-central Gulf of Mexico Basin from east-central Louisiana to the abyssal plain define a dynamic, complex history of sedimentation, salt flowage, and salt evacuation. Proprietary composite seismic profiles (590 km), 33 wells, and published depth-to-basement maps were used to constrain the section in depth. Thirteen sequential structural restorations, incorporating both decompaction and isostatic subsidence (thermal and tectonic), were then constructed from the Late Cretaceous to the Holocene. The restorations highlight and constrain a protracted history of deformation that is primarily controlled by gravity and the progradation of Cenozoic sediments over salt.

Early stages of the tectonic history of the northern Gulf of Mexico Basin were related to differential thermal subsidence resulting from Early-Middle Jurassic rifting. During the Cenozoic, the evolution of the basin was dominated by the influx of large clastic depocenters, which caused the basinward evacuation of autochthonous Jurassic salt. Salt extrusion from the autochthonous layer was accomplished by inclined salt bodies, which flowed into salt glaciers or sheets near the sea floor. Evacuation of allochthonous salt layers provided significant sediment accommodation, and unusually thick sedimentary sections were deposited, such as the Terrebonne Trough of southern Louisiana (3-7 km of Miocene strata). Salt sheet formation and evacuation occurred progressively basinward through time in response to basinward shifts of major Cenozoic sedimentary depocenters. As a salt sheet neared complete evacuation, the underlying autochthonous salt layer would begin to evacuate, providing additional sediment accommodation that caused autochthonous salt flowage basinward, and the formation of the next allochthonous salt sheet basinward of the depocenter.

The area of autochthonous salt progressively decreased through time and currently represents at most 45% of its maximum along this transect. The total area of salt through time was more stable, with variations of only 30% from its maximum. This relationship is a function of lateral salt flow into and out of the plane of section, and possible salt dissolution. The restorations indicate that very little translation or extension (1.46%) occurred at the autochthonous salt level during the evolution of the basin. The majority of translation or extension occurred above allochthonous salt sheets (25%) and was compensated laterally by salt flow. Displacements above allochthonous salt sheets were driven by gravitational instabilities caused by the slope gradient. 

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Member username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].