About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract

AAPG Bulletin, V. 92, No. 4 (April 2008), P. 473-485.

Copyright copy2008. The American Association of Petroleum Geologists. All rights reserved.

DOI:10.1306/11260707046

Prediction of subseismic faults and fractures: Integration of three-dimensional seismic data, three-dimensional retrodeformation, and well data on an example of deformation around an inverted fault

Tina Lohr,1 Charlotte M. Krawczyk,2 David C. Tanner,3 Ramin Samiee,4 Heike Endres,5 Peter O. Thierer,6 Onno Oncken,7 Henning Trappe,8 Raik Bachmann,9 Peter A. Kukla10

1GeoForschungsZentrum Potsdam, Sektion 3.1, Telegrafenberg, 14473 Potsdam, Germany; lohr@gfz-potsdam.de
2Leibniz Institute for Applied Geosciences, Stilleweg 2, 30655 Hannover, Germany; lotte@gga-hannover.de
3Geoscience Center of Goettingen University, Goldschmidtstr. 3, 37077 Goettingen, Germany; dtanner@gwdg.de
4RWE Dea AG, Ueberseering 40, 22297 Hamburg, Germany; ramin.samiee@rwe.com
5Trappe Erdoel Erdgas Consultant, Burgwedeler Str. 89, 30916 Isernhagen, Germany; endres@teec.de
6Trappe Erdoel Erdgas Consultant, Burgwedeler Str. 89, 30916 Isernhagen, Germany; thierer@teec.de
7Department of Geodynamics, GeoForschungsZentrum Potsdam, Telegrafenberg, 14473 Potsdam, Germany; oncken@gfz-potsdam.de
8Trappe Erdoel Erdgas Consultant, Burgwedeler Str. 89, 30916 Isernhagen, Germany; trappe@teec.de
9Department of Geodynamics, GeoForschungsZentrum Potsdam, Telegrafenberg, 14473 Potsdam, Germany; raik@gfz-potsdam.de
10Geology Department, RWTH Aachen, Wuellnerstr. 2, 52056 Aachen, Germany

ABSTRACT

In addition to seismically mapped fault structures, a large number of faults below the limit of seismic resolution contribute to subsurface deformation. However, a correlation between large- and small-scale faults is difficult because of their strong variation in orientation. A workflow to analyze deformation over different scales is described here. Based on the combination of seismic interpretation, coherency analysis, geostatistical analysis, kinematic modeling, and well data analysis, we constrained the density and orientation of subseismic faults and made predictions about reactivation and opening of fractures.

We interpreted faults in seismic and coherency volumes at scales between several kilometers and a few tens of meters. Three-dimensional (3-D) retrodeformation was performed on a detailed interpreted 3-D structural model to simulate strain in the hanging wall at the time of faulting, at a scale below seismic resolution. The modeling results show that (1) considerable strain is observed more than 1 km (0.62 mi) away from the fault trace and (2) deformation around the fault causes strain variations, depending on the fault morphology. This strain variation is responsible for the heterogeneous subseismic fracture distribution observed in wells. We linked the fracture density from the well data with the modeled strain magnitude and used the strain magnitude as a proxy for fracture density. With this method, we can predict the relative density of small-scale fractures in areas without well data. Furthermore, knowing the orientation of the local strain axis, we predict a fault strike and opening or reactivation of fractures during a particular deformation event.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Protected Document: $10
Internal PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Members Only username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership through the AAPG Members Only program. For more information, contact the AAPG Membership Department at members@aapg.org.