About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract

DOI:10.1306/11151010112

Quantitative structural analysis using remote sensing data: Kurdistan, northeast Iraq

Daniel Reif,1 Bernhard Grasemann,2 Robert H. Faber3

1Department of Geodynamics and Sedimentology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; [email protected]
2Department of Geodynamics and Sedimentology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; [email protected]
3TerraMath, SPARKS Commercial B No. 23, Jl. Raya Kelapa Dua, Gading Serpong, 15310 Serpong-Tangerang, Banten, Indonesia; [email protected]

ABSTRACT

The use of remote sensing data increases the efficiency of field mapping, especially in areas with difficult access or where geologic fieldwork is expensive or hazardous. This study presents a newly developed software tool for interactively mapping and measuring the spatial orientation (i.e., Previous HitdipNext Hit Previous HitangleNext Hit and Previous HitdipNext Hit direction) of finite planar geologic structure from digital elevation models (DEMs). The orientations of planar data (e.g., sedimentary bedding or fault planes) are derived by approximating a virtual plane to the intersection of the planar feature with the DEM topography. To increase the informative value of the DEM, satellite images can be draped onto the topographic data set. The software tool was tested in the Zagros fold and thrust belt, northeast of Erbil (Kurdistan, northeast Iraq), where the stratigraphy has been deformed into subcylindrical fold trains. Computed orientations have been compared with actual Previous HitdipTop angles and directions measured in the field. Under favorable conditions (moderately dipping planes, strong competence contrast between stratigraphic boundaries, intersection with a rugged topography, low vegetation), statistical comparison of computed data with the field measurements demonstrates that the spatial data set can be reproduced from the DEM within an average error of approximately 10deg. The strength of the method is demonstrated by integrating field data with computed values from inaccessible areas, resulting in a reasonably well-constrained balanced geologic cross section.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Member username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].