About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract

AAPG Bulletin, V. 96, No. 7 (July 2012), P. 12791299.

Copyright copy2012. The American Association of Petroleum Geologists. All rights reserved.

DOI:10.1306/11211111069

Impact of arid surface megacracks on hydrocarbon reservoir properties

Philipp Antrett,1 Anna Alexandra Vackiner,2 Peter Kukla,3 Norbert Klitzsch,4 Harald Stollhofen5

1Energy and Mineral Resources Group, Geological Institute, RWTH Aachen University, Germany; [email protected]
2Energy and Mineral Resources Group, Geological Institute, RWTH Aachen University, Germany; [email protected]
3Energy and Mineral Resources Group, Geological Institute, RWTH Aachen University, Germany; [email protected]
4E.ON Energy Research Center, RWTH Aachen University, Germany; [email protected]
5North Bavarian Center of Earth Sciences, Friedrich Alexander Universitat Erlangen-Nuernberg, Germany; [email protected]

ABSTRACT

The megacrack pattern of the ephemeral north Panamint dry lake, California, United States, is characterized by variably sized polygons with diameters ranging from hundreds of meters to meters. The evolution and subsurface extent of this polygonal pattern and a probable tectonic link are examined by ground resistivity measurements and surface mapping. Crack development is initiated by the shrinking of clays caused by changes in water content near the surface. For crack evolution, the following processes are proposed: Cavities develop at approximately 1-m (sim3-ft) depth during a subsurface phase, followed by the collapse of the overburden into the existing cavities to form the surface cracks. Cracks are filled by wind-blown sand and dried-out lake sediments from collapsing crack walls. Following burial, differences in competence between crack-fill and surrounding playa-lake sediments provide zones of structural weakness that might channelize stress release and faulting. Ground resistivity measurements confirmed the extent of the cracks to a depth of more than 3 m (gt9 ft). The megacrack pattern is compared to a Rotliegende (Upper Permian) tight gas field, located in the southern Permian Basin of northwestern Germany, situated in a comparable geologic setting. There, a multidirectional polygonal pattern is recorded on horizon slices of three-dimensional seismic data and compares well to our observations from the Panamint Valley. The Rotliegende pattern is associated with low-offset faults, which are proposed to be responsible for subtle reservoir compartmentalization.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Member username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].