About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract

DOI:10.1306/10011211181

Measuring and modeling fault density for CO2 storage plume-fault encounter probability estimation

Preston D. Jordan,1 Curtis M. Oldenburg,2 Jean-Philippe Nicot3

1Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720; pdjordan@lbl.gov
2Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720; cmoldenburg@lbl.gov
3Bureau of Economic Geology, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas 78713; jp.nicot@beg.utexas.edu

ABSTRACT

Emission of carbon dioxide (CO2) from fossil-fueled power generation stations contributes to global climate change. Capture of CO2 from such stationary sources and storage within the pores of geologic strata (geologic carbon storage) is one approach to mitigating anthropogenic climate change. The large storage volume needed for this approach to be effective requires injection into pore space saturated with saline water in reservoir strata overlain by cap rocks. One of the main concerns regarding storage in such rocks is leakage via faults. Such leakage requires, first, that the CO2 plume encounter a fault and, second, that the properties of the fault allow CO2 to flow upward. Considering only the first step of encounter, fault population statistics suggest an approach to calculate the probability of a plume encountering a fault, particularly in the early site-selection stage when site-specific characterization data may be lacking. The resulting fault encounter probability approach is applied to a case study in the southern part of the San Joaquin Basin, California. The CO2 plume from a previously planned injection was calculated to have a 4.1% chance of encountering a fully seal offsetting fault and a 9% chance of encountering a fault with a throw half the seal thickness. Subsequently available information indicated the presence of a half-seal offsetting fault at a location 2.8 km (1.7 mi) northeast of the injection site. The encounter probability for a plume large enough to encounter a fault with this throw at this distance from the injection site is 25%, providing a single before and after test of the encounter probability estimation method.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Protected Document: $10
Internal PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Members Only username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership through the AAPG Members Only program. For more information, contact the AAPG Membership Department at members@aapg.org.