About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract

AAPG Bulletin, V. 97, No. 9 (September 2013), P. 13951419.

Copyright copy2013. The American Association of Petroleum Geologists. All rights reserved.

DOI:10.1306/03041312069

Seismic modeling in the analysis of deep-water sandstone termination styles

Kristina Bakke,1 Ian A. Kane,2 Ole J. Martinsen,3 Steen A. Petersen,4 Tor A. Johansen,5 Steinar Hustoft,6 Frode Hadler Jacobsen,7 Audun Groth8

1Statoil ASA, Research Centre, Sandsliveien 90, NO-5020 Bergen, Norway; [email protected]
2Statoil ASA, Research Centre, Sandsliveien 90, NO-5020 Bergen, Norway; [email protected]
3Statoil ASA, Exploration Excellence, Sandsliveien 90, NO-5020 Bergen, Norway; [email protected]
4Statoil ASA, Research Centre, Sandsliveien 90, NO-5020 Bergen, Norway; [email protected]
5University of Bergen, Department of Earth Science, PB 7800, NO-5020 Bergen, Norway; [email protected]
6Statoil ASA, Geohazard Group, Statoil ASA NO-0246 Oslo, Norway; [email protected]
7Statoil ASA, Research Centre, Arkitekt Ebbels veg 10, Trondheim, Norway; [email protected]
8Statoil ASA, Exploration Excellence, Statoil ASA NO-0246 Oslo, Norway; [email protected]

ABSTRACT

Innovative seismic forward modeling is used to illustrate the sensitivity within seismic data, and its application in the interpretation of onlap and pinch-out of terminating deep-water sandstones, two critical components in deep-water exploration and production. Sandstone quality, net-to-gross estimates, volume calculations, vertical connectivity, and stratigraphic trapping are all dependent on the sandstone extent and their seismic characteristics in these settings. However, seismic resolution is commonly insufficient to resolve the critical reservoir parameters. Seismic modeling of termination styles based on integrated outcrop and subsurface properties allows for depth- and resolution-focused predictive models to be built for improved subsurface analysis. This technique is currently underused as a method to better understand the sensitivity of seismic data to the target lithologies and their geometries. The Gres d'Annot Formation is a well-studied sand-prone deep-water system of Paleogene age, deposited in a bathymetrically complex setting. Six end-member termination styles are discussed, including three sand-prone styles—simple onlap (Os), draping onlap (Od), and bed thickening (Ot)—and three heterolithic styles—advancing pinch-out (Pa), convergent pinch-out (Pc), and convergent thickening and pinch-out (Pct). Local thickening close to the system margins is common in both sand-prone and heterolithic terminating strata and plays an important function in the appropriate distribution of sandstone. The outcrops are interpreted as potential (process) analogs for the complex sandstone distribution and termination patterns observed in plays like the Paleogene of the Gulf of Mexico and the Jurassic of the northern North Sea.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Member username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].