About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract

AAPG Bulletin, V. 104, No. 6 (June 2020), P. 1287-1321.

Copyright ©2020. The American Association of Petroleum Geologists. All rights reserved.

DOI: 10.1306/12031917358

Evaluating the depositional environment, lithofacies variation, and diagenetic processes of the Wolfcamp B and lower Spraberry intervals in the Midland Basin: Implications for reservoir quality and distribution

Ryan D. Wilson,1 Jayashree Chitale,2 Katelyn Huffman,3 Paul Montgomery,4 and Shane J. Prochnow5

1Chevron Energy Technology Company (ETC), Houston, Texas; [email protected]
2Chevron ETC, Houston, Texas; [email protected]
3Chevron North America Exploration and Production Company, Houston, Texas; [email protected]
4Chevron ETC, Clastic Stratigraphy Team, Houston, Texas; [email protected]
5Chevron North America Exploration and Production Company, Houston, Texas; [email protected]

ABSTRACT

Detailed facies characterization in the Wolfcamp B and lower Spraberry intervals of two drill cores in the Midland Basin has yielded five main lithofacies with distinctive physical, chemical, and biologic attributes. The main attributes for facies identification include lithology and/or mineralogy, texture and/or fabric, porosity, hydrogen index, and total organic carbon content. The methodologies are focused on detailed core description, thin-section petrography, quantitative x-ray diffraction, and field emission scanning electron microscopy (SEM). Porosity data are primarily based on Gas Research Institute (Core Laboratories) measurements and field emission SEM assessment. Moreover, the depositional and diagenetic controls on facies development are addressed to assess the dominant geological processes that govern reservoir quality and distribution.

A model of five end-member facies is proposed to characterize source and reservoir elements through delineating facies tracts. The five end-member facies are as follows: facies 1: silty mudstone, optimal source, and optimal to fair reservoir; facies 2: muddy siltstone (optimal source and optimal reservoir); facies 3: silty calcareous mudstone (good source and good reservoir); facies 4: bioclastic wackestone–floatstone (fair source and fair reservoir); and facies 5: packstone–grainstone (poor source and poor to excellent reservoir). The proposed facies scheme aims to provide a more comprehensive approach to capture the high vertical and lateral variability in this mixed carbonate and fine-grained clastic succession. Through this detailed textural, compositional, sedimentologic, and diagenetic approach, this facies model can be used to better understand reservoir quality and distribution throughout the Midland Basin.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Member username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].