ABSTRACT

According to the U.S. Geological Survey, Vermilion, Acadia, and Jefferson Davis parishes in southwestern Louisiana withdrew more than 1.7 million m3 (450 million gallons) of ground water per day in 2000. The primary aquifer in this region is the Chicot Aquifer. Most of the groundwater withdrawn is used for irrigation of agricultural fields and the use is seasonal. During the growing season, water usage is much higher than average and water levels in wells can drop by more than 10 m (33 ft). After the growing season, water withdrawals decline and water levels in wells largely rebound to their pre-growing season levels. In addition, there has been a slow long-term decline in water levels in some parts of the Chicot Aquifer due to over pumping both for irrigation and industrial use. Surface subsidence due to groundwater withdrawal results from compaction of the aquifer as well as intervening clay layers. As water pressure levels decrease in major aquifers in response to pumping, water also drains from interbedded clay confining layers. The weight of overlying sediments causes clays to compact. The clay compaction effect on surface subsidence due to long-term groundwater level declines has been well documented in Baton Rouge, Louisiana; Houston, Texas; Las Vegas, Nevada; Sacramento Valley, California; and Venice, Italy. While water levels in aquifers due to seasonal withdrawals may recover, water levels in adjacent confining layers do not. The lower permeability of clays causes them to progressively drain with each seasonal cycle of groundwater withdrawal. Thus, permanent surface subsidence is possible by this mechanism.

INTRODUCTION

The Chicot Aquifer underlies about 23,000 km2 (8,880 mi2) of southwestern Louisiana and continues into Texas (Fig. 1). Sediments are generally unconsolidated and range in age from Pliocene to Recent. These deposits formed by coastal, deltaic, and fluvial processes. The aquifer is composed of a mixture of sand and gravel separated by layers or lenses of clay and silt. Sediments thicken and dip to the south and southeast. Grain size in sand units decreases southward. The Chicot is less sand rich in the western portion (Lovelace et al., 2004). Percent sand also decreases with depth (Lovelace et al., 2004).

In the northern part of the study area (Allen, Beauregard, Evangeline, Rapides, and Vernon parishes in (Fig. 1), the aquifer outcrops at the surface and is an undifferentiated, massive sand. In the southern part of the study area, the aquifer is divided by a thick clay layer into upper and lower sands (Whitman and Kilburn, 1963). In the southwestern most part of the study area (Cameron and Calcasieu parishes in Figure 1), the aquifer consists of the “200,” “500,” and “700” ft sands (Jones, 1950) which are separated by approximately 100 m (330 ft) thick con-