The idea of continuous settling for the pipette method is not original with the writer. The experimental material (summer fractions of varved clays) was essentially the same in all experiments. The writer believes that the saving of time, approximately 10 hours, as shown by this purely empirical test, justifies his recommendation of this modified technique to the consideration and certainly to the further experimentation of workers in the finer sediments. These experiments also show the experimental error involved in analysis by the pipette method. In addition, this modified technique, by eliminating the necessity for a shaking or stirring device, will also greatly simplify any machine designed to mechanize the pipette method.

GORDON RITTENHOUSE
University of Chicago

A CENTRIFUGE TUBE FOR HEAVY MINERAL SEPARATIONS

The use of an ordinary centrifuge tube for the separation of heavy minerals of a fine grained rock rarely leads to satisfactory quantitative data. The purpose of this note is to describe an inexpensive and permanent centrifuge tube which makes a rapid and efficient separation of grains part at an angle of approximately thirty degrees. A cork-tipped plunger (A) fits on the shoulder (E). Into the glass cone at the lower end of the rod is fitted a cone-shaped cork (A) which is slightly larger than the constricted part of the tube so that it completely separates the two parts of the tube when the cork is in position. A cork (C) is provided for the opening of the centrifuge tube and fits tightly on the stem of the plunger so that the plunger will remain in any desired position; this makes it possible to close the heavy mineral chamber or to leave it open to provide for the passage of the minerals, whichever is desired.

For the best results the following procedure is suggested: (1) fill the tube to