Interpretation using sequence stratigraphy

Interpretation using sequence stratigraphy

**PART I: SEISMIC STRATIGRAPHY INTERPRETATION
PROCEDURE**

P.R. VAIL, Rice University, Houston, Texas

INTRODUCTION

Application of seismic stratigraphic interpretation techniques to sedimentary basin analysis has resulted in a new way to subdivide, correlate, and map sedimentary rocks. This technique is called sequence stratigraphy. The application of this procedure to a grid of seismic data produces a detailed chronostatigraphic framework. The purpose of the method is to be as objective as possible in identifying intervals of sequence and systems tract boundaries in order to characterize the stratigraphic sequences and systems tracts in two ways: by correlation between wells with biostratigraphic-time correlations, well-log marker-bed correlations, and correlation with the global cycle chart shown on Plate 1; and by correlation with seismic profiles. The sequence boundaries are characterized by regional onlap and truncation. With one exception, systems tract boundaries within a sequence are characterized by regional dip-warp. Changes of sea level superimposed on longer-term tectonic changes are called depositional sequences and systems tracts. They have established a chronostratigraphic correlation framework based on physical changes of sea level related to regional downlap. These patterns are shown on Figure 1 and are discussed more objectively as possible all variations of seismic parameters within a depositional sequence.