About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

Journal of Sedimentary Research (SEPM)

Abstract


Journal of Sedimentary Research
Vol. 86 (2016), No. 3. (March), Pages 217-235
Research Articles

Fluvio-Marine Sediment Partitioning As A Function of Basin Water Depth

Jochem F. Bijkerk, Joris T. Eggenhuisen, Ian A. Kane, Niels Meijer, Colin N. Waters, Paul B. Wignall, William D. McCaffrey

Abstract

Progradational fluvio-deltaic Previous HitsystemsNext Hit tend towards but cannot reach equilibrium, a state in which the longitudinal profile does not change shape and all sediment is bypassed beyond the shoreline. They cannot reach equilibrium because progradation of the shoreline requires aggradation along the longitudinal profile. Therefore progradation provides a negative feedback, unless relative sea level falls at a sufficient rate to cause non-aggradational extension of the longitudinal profile. How closely fluvio-deltaic Previous HitsystemsNext Hit approach equilibrium is dependent on their progradation rate, which is controlled by water depth and downstream allogenic controls, and governs sediment partitioning between the fluvial, deltaic, and marine domains. Here, six analogue models of coastal fluvio-deltaic Previous HitsystemsNext Hit and small prograding shelf margins are examined to better understand the effect of water depth, subsidence, and relative sea-level variations upon longitudinal patterns of sediment partitioning and grain-size distribution that eventually determine large-scale stratigraphic architecture. Fluvio-deltaic Previous HitsystemsNext Hit prograding in relatively deep-water environments are characterized by relatively low progradation rates compared to shallow-water Previous HitsystemsNext Hit. This allows these deeper water Previous HitsystemsNext Hit to approach equilibrium more closely, enabling them to construct less concave and steeper longitudinal profiles that provide low accommodation to fluvial Previous HitsystemsNext Hit. Glacio-eustatic sea-level variations and subsidence modulate the effects of water depth on the longitudinal profile. Previous HitSystemsNext Hit are closest to equilibrium during falling relative sea level and early lowstand, resulting in efficient sediment transport towards the shoreline at those times. Additionally, the strength of the response to relative sea-level fall differs depending on water depth. In Previous HitsystemsNext Hit prograding into deep water, relative sea-level fall causes higher sediment bypass rates and generates significantly stronger erosion than in shallow-water Previous HitsystemsNext Hit, which increases the probability of incised-valley formation. Water depth in the receiving basin thus forms a first-order control on the sediment partitioning along the longitudinal profile of fluvio-deltaic Previous HitsystemsNext Hit and the shelf clinoform style. It also forms a control on the availability of sand-grade sediment at the shoreline that can potentially be remobilized and redistributed into deeper marine environments. Key findings are subsequently applied to the literature of selected shelf clinoform successions.


Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24