About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

Journal of Sedimentary Research (SEPM)

Abstract


Journal of Sedimentary Research
Vol. 90 (2020), No. 7. (July), Pages 673-686
DOI: 10.2110/jsr.2020.36

The stratigraphic evolution of a submarine channel: Linking seafloor dynamics to depositional products

Stephen M. Hubbard, Zane R. Jobe, Brian W. Romans, Jacob A. Covault, Zoltan Sylvester, Andrea Fildani

Abstract

We investigate the relationship between the cross-sectional geomorphic expression of a submarine channel as observed on the seafloor and the stratigraphic product of long-lived erosion, bypass, and sediment deposition. Specifically, by reconstructing the time–space evolution of an individual channel fill (i.e., channel element) exposed in outcrop, we establish a genetic link between thick-bedded channel-element-axis sandstone to thinly interbedded channel-element-margin deposits. Although the bounding surface between axis sandstone and margin thin beds is sharply defined, it is composed of a series of geomorphic surface segments of various ages; as such, the composite stratigraphic surface (∼ 17 m relief) was formed from numerous incision events that repeatedly sculpted the conduit. By demonstrating the origin of the stratigraphic surface, we conclude that geomorphic surfaces with 2–7 m of erosional relief were largely responsible for the observed intra-channel-element architecture (and ultimately, the composite 17-m-thick element). The widely documented channel element axis-to-margin architecture is a product of submarine-channel thalweg dynamics, primarily recording interactions between the seafloor and the basal high-concentration layers of channelized turbidity currents.


Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24