About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

Journal of Sedimentary Research (SEPM)

Abstract


Journal of Sedimentary Petrology
Vol. 44 (1974)No. 2. (June), Pages 441-449

Early Diagenesis: Expansible Soil Clay-sea Water Reactions

Herman E. Roberson

ABSTRACT

Two clay-sized vermiculites, one montmorillonite, and one Al-hydroxy-vermiculite, all of which were extracted Previous HitfromNext Hit four different soil samples, were Ca++-saturated and suspended in sea water for periods up to 10 months. Chemical analyses of the sea water immersed clays show that the adsorbed cation composition of the clays changes very little after only a few days of contact with sea water. A large proportion (up to 40%) of the interlayer cations become non-exchangeable after prolonged contact with sea water. After contact with sea water for 11 weeks, the ratio of adsorbed Mg++ to adsorbed K+ varies Previous HitfromNext Hit about 1:1 to 5:1 for these four samples, and the amount of adsorbed Na+ is less than 20% of the total adsorbed cation content for all these samples. X-ray Previous HitdiffractionNext Hit patterns of sea water-immersed samples show that discrete illite does not form as had been expected. Instead, a "mixed-layer" phase develops. This phase is a random interstratification of illite-like and expansible layers. The 001 Previous HitdiffractionNext Hit maximum produced by this "mixed-layer" phase is extremely broad. Because this material gives Previous HitdiffractionNext Hit over such a large 2^thgr range, this phase when mixed with other clay minerals may have been undetected in many previous studies of Recent marine clays. The suggestion is offered that burial diagenesis would tend to transform this mixed-layer clay into discrete illite and/or chlorite. Computations show that expansible soil clays delivered to the oceans as part of the su pended load of rivers can adsorb up to 50% or more of all the K+ and Mg++ delivered as dissolved load to the oceans.


Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24