About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

Journal of Sedimentary Research (SEPM)

Abstract



Journal of Sedimentary Research, Section A: Sedimentary Petrology and Processes
Vol. 67 (1997)No. 1. (January), Pages 235-245

Thermal History Constraints from Studies of Organic Matter, Clay Minerals, Fluid inclusions, and Apatite Fission Tracks at the Ardeche Paleo-margin (BA1 Drill Hole, GPF Program), France

Maurice Pagel (1), Jean-Jacques Braun (1), Jean Robert Disnar (2), Luis Martinez (3), Christophe Renac (4), Guy Vasseur (5)

ABSTRACT

The thermal history of the Ardeche paleo-margin (southeastern France) has been reconstructed using various analytical data from minerals and organic matter and conventional interpretation. These methods comprise Tmax and vitrinite reflectance measurements on organic matter, determination of the smectite content in mixed-layer illite/smectite, fluid-inclusion microthermometry in quartz, barite, dolomite, and anhydrite, and fission-track analyses in apatite. The Balazuc (BA1) drill hole, 1730 m deep, intersects mainly Jurassic carbonate rocks, Triassic sandstones, and sulfate-rich claystones and ends in Carboniferous rocks. The present bottom-hole temperature is 70°C. Other drill holes, less than 6 km away, were studied when necessary. One of the main objectives of this paper is to ssess the agreement between the different geothermometric methods, and to check their limitations and convergence when used on carbonate- and sandstone-dominated reservoirs.

In the Triassic sandstones, primary aqueous inclusions in anhydrite cement and at the boundary between the detrital quartz grain and the quartz overgrowth are one-phase brine inclusions entrapped below 70°C. The homogenization temperature determined on the later barite cement is about 100°C.

Aqueous two-phase inclusions in healed microfractures in anhydrite are present at the base of the drill core near major faults. Temperatures as high as 210°C recorded for these fluid inclusions could be associated with episodic fluid injections from below through the fault zones during the Early Jurassic.

The fluid inclusions in dolomite, most of them reequilibrated during burial, indicate a trapping temperature of 130-145°C at 1600 m and a temperature decrease towards the surface. This value is in good agreement with the MPTB (maximum paleotemperature of burial) method on organic matter, which converges to a maximum burial temperature of 130°C at the same depth. The apatite fission-track data agree with these temperatures and indicate that the temperature decreased below 120 ± 10°C during the Eocene.

These paleotemperatures, much higher than the present ones, can be explained by the erosion of 1900 m of mainly Cretaceous sediments. This interpretation implies a high average sedimentation rate during the Cretaceous, in agreement with data determined on a regional scale. A time-temperature evolution is proposed for the formations present in the Balazuc drill hole and the eroded sedimentary rocks. The application of the dual reaction model of the transformation of smectite to illite (Velde and Vasseur 1992) shows that the data are in good agreement with the kinetic model. However, the vitrinite reflectance variation trend with depth, predicted from the Burnham and Sweeney model (1989), is different from the data variation. No definitive explanation can be proposed for the failure of aturity assessment through vitrinite reflectance in the BA1 drill hole.


Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24