About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

Journal of Sedimentary Research (SEPM)

Abstract


Journal of Sedimentary Research
Vol. 72 (2002), No. 6. (November), Pages 775-792

K Uptake by Modern Estuarine Sediments During Early Marine Diagenesis, Mississippi Delta Plain, Louisiana, U.S.A.

Victoria C. Hover, Lynn M. Walter, Donald R. Peacor

ABSTRACT

Marine sediment porewaters are commonly depleted in K+ relative to conservative mixing trends, but the mineralogical sink for K+ in the sediment has not been well characterized. Results are presented from a geochemical study of surface waters and porewaters and associated muddy sediments in the Mississippi Delta plain estuary spanning the salinity gradient from 0-12‰. Evidence of K+ depletion in sediment porewaters is integrated with scanning transmission and analytical electron microscopy (STEM/AEM) analyses of clay components to determine possible mineralogical sinks for K+ in the sediments.

Conservative mixing between the freshwater influx from the Atchafalaya/Mississippi river systems and Gulf of Mexico seawater controls the surface-water major-element composition. Porewaters from the most saline site, however, are depleted in K+ by up to 33% relative to overlying water, implying uptake of K+ by the sediment. Textural characterization of the sediment at the same location by TEM indicates that it is dominated by aggregates of highly disordered smectite-rich clay material, which is mixed with a small component of more-ordered illite-rich material. AEM compositions obtained on the most smectite-like component in these aggregates indicates that the average K+ contents increase by up to 1.0 wt % K2O relative to similar smectite-rich clay in freshwater sediments. Ca2+ concentrations in smectite-rich clay decrease concomitantly, whereas Na+ concentrations are similar between the sites. X-ray diffraction (XRD) analyses confirm that smectite-rich clay from the freshwater site has a larger interlayer spacing than smectite-rich clay from the brackish-water site, consistent with exchange of smaller hydrated interlayer K+ (± Na+) for larger Ca2+ (± Mg2+). AEM data indicate that the discrete illite-rich component also takes up K+.

The integrated porewater and sediment analytical data imply that uptake of K+ by smectite-rich clay is a rapid process (decadal) occurring at the earliest stages of diagenesis in estuarine environments upon exposure to brackish water. Our study shows that K+ uptake in marine sediments may not require the formation of authigenic minerals. Instead, exchange of K+ for other interlayer cations in smectite-rich clay and weathered illite may provide a substantial sink for K+ in the marine environment.


Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24