About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Special Volumes

Abstract


Memoir 110: The Eagle Ford Shale: A Renaissance in U.S. Oil Production, 2016
Pages 167-186

Chapter 3: An SEM Study of Porosity in the Eagle Ford Shale of Texas—Pore Types and Porosity Distribution in a Depositional and Sequence-stratigraphic Context

Juergen Schieber, Remus Lazar, Kevin Bohacs, Robert Klimentidis, Mirela Dumitrescu, Jeff Ottmann

Abstract

Although typically considered with a focus on high-resolution petrography, shale porosity should not be thought of as a stand-alone petrographic feature. Shale and mudstone porosity is the outcome of a long succession of processes and events that span the continuum from deposition through burial, compaction, and late diagenesis. For the Eagle Ford Shale this journey began with accumulation in intra-shelf basins at relatively low latitudes on a southeast-facing margin during early parts of the late Cretaceous. To understand the factors that generated and preserved porosity in this economically important interval, a scanning electron microscope study on ion-milled drill-core samples from southern Texas was conducted to understand the development of petrographic features and porosity and place them in stratigraphic context.

The studied samples show multiple pore types, including pores defined by mineral frameworks (clay and calcite), shelter pores in foraminifer tests and other hollow fossil debris, and pores in organic material (OM). In many instances, framework and shelter pores are filled with OM that has developed pores due to maturation. Large Previous HitbubbleTop pores in OM suggest that hydrocarbon liquids were left behind in or migrated into these rocks following petroleum generation and that the bubbles developed as these rocks experienced additional thermal stress. These larger OM pores indicate deeper seated interconnection on ion-milled surfaces and in three-dimensional image stacks.

The largest pores occur in the infills of foraminifer tests. The framework of crushed carbonate debris in planktonic fecal pellets shows intermediate levels of porosity, and the silicate-rich matrix that encloses framework components has the smallest average porosity.

The distribution of pore types is not uniform. Our hypothesis is that facies association is an important factor that determines bulk porosity and influences reservoir performance. The observed variability in the attributes of the described distal, medial, and proximal facies associations is thought to translate into significant variability of rock properties such as total organic carbon and porosity. In turn, this variability should control the quality and distribution of the intervals that are optimum sources and reservoirs of hydrocarbons in the Eagle Ford Shale. The medial facies association most likely has the best porosity development when a favorable combination of more commonly abundant calcareous fecal pellets and organic material versus clay content is present. The systematic arrangement of facies associations into parasequences provides the basis for testing and predicting the best development of optimal reservoir facies within a sequence-stratigraphic framework in the Eagle Ford Shale.


Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24