About This Item
- Full text of this item is not available.
- Abstract PDFAbstract PDF(no subscription required)
Share This Item
The AAPG/Datapages Combined Publications Database
Houston Geological Society Bulletin
Abstract
Abstract: Seismic Expression of Normal Faults
and Associated Structures
By
Normal faults and associated secondary structures are
common features in continental rifts. Fault
dip
and displacement
stratal
dip
, and fold position and size vary considerably.
Synthetic seismic-reflection profiles show that each of these
structural variables, as well as rock velocity, influence the
seismic expression of rift-related structures.
The observed
dip
and curvature of any fault on an
unmigrated seismic section depend, not only on the
dip
and
curvature of the actual fault surface, but also on the velocity
and
dip
of the overlying strata. The observed
dip
of a fault
decreases as the velocity of the strata directly overlying the
fault increases. Thus, planar normal faults in rocks whose
velocities increase with depth may appear to flatten with depth
on seismic sections. The observed
dip
of a fault decreases as
the acute
angle
between the fault surface and the overlying
strata decreases. Consequently, on unmigrated seismic sections,
normal faults dipping in the opposite direction as the
strata may appear to have steeper dips than identical normal
faults dipping in the same direction as the strata; planar
normal faults active during deposition may appear to steepen
with depth.
The appearance of secondary structures associated with normal faulting on unmigrated seismic sections depends on the position and size of the secondary structures. A greater thickness of low-velocity rocks on the downthrown aide of a normal fault may disrupt and bend the reflections on the upthrown side. Depth, rock-velocity distribution, and fault displacement affect the severity of the distortion. This distortion may obscure secondary structures on the upthrown side of faults, and can be interpreted erroneously as secondary faulting and folding. Synclines produced by drag on the downthrown sides of normal faults generally have small radii of curvature relative to their burial depths. This relationship makes them difficult to identify on unmigrated seismic sections. In contrast, forced folds in rifts are gentle, shallow structures overlying normal faults. These folds are easier to identify because they are unaffected by the distortion beneath faults, and their synclines have large radii of curvature compared to their burial depths.
End_of_Record - Last_Page 2---------------