About This Item
- Full text of this item is not available.
- Abstract PDFAbstract PDF(no subscription required)
Share This Item
The AAPG/Datapages Combined Publications Database
Houston Geological Society Bulletin
Abstract
Abstract: Deepwater Geohazards and Engineering Geology: Meeting
Tough Challenges
By
Fugro-McClelland Marine Geosciences
Petroleum exploration and development are now being carried out in water depths of 5,000 feet and more. Investments for these offshore activities are huge: rates for some deepwater drilling rigs alone are currently $100,000 per day or more, and total investment in some deepwater developments has been as much as $1.2 billion.
To complicate matters, shallow geologic and soil conditions at deepwater sites are often complex and difficult compared with conditions typically found on the continental shelves. These complex conditions present serious engineering and safety challenges that require careful application of geoscience techniques as a basis for avoiding or reducing hazards and to help minimize the cost of deepwater development. Reliable engineering-geologic characterization of site conditions, being increasingly based on 3-D seismic data, is essential to optimize siting, design, and operation of facilities and to thus maximize value to investors.
Complete characterization of offshore sites includes defining water depths and seafloor topography, determining soil geotechnical properties and relationships among soil strata, and making an engineering assessment of geologic conditions. Geophysical data define geologic features and general stratigraphy, whereas borehole data define detailed stratigraphy and soil geotechnical properties at specific points; alone, neither completely characterizes a site. Among the activities requiring offshore site characterization, including geohazards assessment, are well planning and exploratory drilling, pipeline routing and design, and facilities siting and design.
Complex deepwater (water depths >600
feet) conditions in the
Gulf
of
Mexico
that
can cause engineering difficulties include
1) steep and potentially unstable slopes of
10 degrees or more; 2) irregular, commonly
rocky, topography with sharp relief
ranging from a few feet to several tens of
feet; 3) faults, many of which appear to be
active, with seafloor scarps ranging up to
more than 200 feet high; 4) both modem
and ancient landslides covering large
areas; 5) gas hydrates (solid, ice-like mixtures
of gas and water found in water
depths >1,500 feet) that may be subject
to reduced shear strength and
thaw settlement when heated; 6) overpressured
sands at relatively shallow
depths; 7) erosion of tens of feet of
seafloor sediments; and 8) soil conditions
ranging from weak, underconsolidated
soils to rock. Similar difficult
conditions are found in many
other deepwater areas outside the
Gulf
of
Mexico
as well.
Several geophysical tools are typically
used to help characterize offshore
sites: a narrow-beam water-depth
recorder with velocimeter calibration
and/or a swath-mapping bathymetric
system; a side-scan sonar to show a
plan view of the seafloor and features
on it; a shallow-penetration subbottom
profiler (3.5 kHz) to show geologic
conditions to penetrations of up to
about 200 feet; an intermediate-penetration
profiler (minisparker or small
air guns, as examples) to show conditions
within the foundation zone (to
penetrations of about 500 feet); and a
deep-penetration profiler (air-gun
array with multi-channel digital
recording, for
example
) to show deep-seated
faults, buried landslides, and
gassy sediments (to penetrations up to
4000 feet).
Results of marine engineering geophysical
site surveys include a variety
of color graphics such as water-depth
map and 3-D perspective views of the
seafloor, seafloor gradient map,
seafloor soil and soil province
maps
,
soil cross sections, geologic structure
and features
maps
, and hazards
maps
,
including drilling risk and development
favorability
maps
. Results 1) are
presented using simple, straight-forward
terminology and not in technical
jargon the end-user (engineers) may
not be familiar with; 2) focus on the
important engineering issues and not
on survey documentation and methodologies;
3) are presented as quantitatively
as possible; and 4) are integrated
with geotechnical data for a reliable
definition and engineering assessment
of both soil and geologic conditions.
Developing trends include increasing use of 3-D seismic data and workstation analysis; site-survey data increasingly being recorded in digital format; integration of site-survey results in GIS data bases; and application of exploration and development techniques (including attribute analysis and geostatistics for direct characterization of materials using seismic data) to shallow engineering concerns.
Characterizing deepwater sites around the world, and developing new techniques and technologies for doing so quantitatively, will continue to provide marine engineering geoscientists with tough challenges into the next century.
End_of_Record - Last_Page 9---------------
