Re-examination of the Gautreau Formation and its stratigraphic position, Weldon, New Brunswick, Canada

R. Andrew MacRae¹, Matthew R. Stimson^{2,3}, Steven J. Hinds², Adrian F. Park², Olivia A. King⁴, John W.F. Waldron⁵, and Lauren K. Eggleston⁵

1. Department of Geology, Saint Mary's University, Halifax, Nova Scotia B3H 3C3, Canada

2. New Brunswick Department of Energy and Resource Development, Geological Surveys Branch, Fredericton, New Brunswick E3C 2G6, Canada <<u>mstimson29@gmail.com</u>>

3. Steinhammer Paleontology Laboratory, New Brunswick Museum, Saint John New Brunswick E2K 1E5, Canada

4. Department of Earth Sciences, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada

5. Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton Alberta T6G 2E3, Canada

At its type location in the Weldon area south of Moncton, the Gautreau Formation is a Lower Carboniferous (Tournaisian) evaporite deposit. The evaporites occur within boreholes in the fault-bounded, westerly-dipping Weldon syncline, where the enveloping strata range from the Albert Formation of the Horton Group to the Hopewell Cape Formation of the Mabou Group. Presumably coeval surface exposures of dominantly grey shale with and without minor evaporites have been mapped by previous workers at several nearby locations.

When first identified by Norman in the 1920s, the Gautreau Formation was interpreted as a salt-dominated Horton Group unit. The definition was subsequently expanded to include the overlying evaporite-bearing (glauberite; Na₂Ca(SO₄)₂) and non-evaporite-bearing grey shales beneath red beds of the Weldon Formation. In recent published literature, the stratigraphic position of the broadened Gautreau Formation was reassigned to the younger Sussex Group that unconformably overlies the Horton Group in the Moncton subbasin. This refinement was based on palynology constraints (Spore Zone 5) identified in the Stilesville and Peck Creek areas from surface outcrops of shales presumed to be Gautreau Formation equivalent, but without evaporites present.

The Gautreau Formation is herein examined from 90 well logs and conventional core within the Weldon syncline. Surface outcrops and cliff sections along the Petitcodiac River and adjacent tributaries have been remapped. New palynology samples have been studied in conjunction with reprocessed seismic. As a result, the stratigraphic position and definition of the Gautreau Formation are reinterpreted. On the north flank of the Weldon syncline, the Stoney Creek Fault is truncated by overlying sedimentary rocks, suggesting a subtle disconformity exists at the contact or within the overlying red beds of the Weldon Formation.Palynomorphs collected directly from the salt of the Gautreau Formation suggest a Lower Tournaisian age (Spore Zone 2; typical of the Horton Group) and the same for laterally equivalent and overlying evaporite-bearing grey shales. Younger spore zones typical of the overlying Sussex Group (Zones 4 and 5) do not occur consistently until the overlying Weldon Formation, implying assignment of the current Gautreau Formation and its lateral equivalents to the Sussex Group is not justified in the type area, and it should instead remain within the Horton Group as suggested by

Atlantic Geology, 2017, Volume 53 Atlantic Geoscience Society Abstracts – 43rd Colloquium & Annual General Meeting 2017 doi: 10.4138/atlgeol.2017.006 Copyright © 2019 Atlantic Geology some prior workers. Bed-scale and longer-term fluctuations between halite, glauberite, gypsum, anhydrite, and other minerals (e.g., thenardite Na₂SO₄) represent the evolution of the evaporite basin from subaqueous halite to eventually sabkha-like nodular gypsum/anhydrite deposition near the end of evaporite deposition.

Atlantic Geology, 2017, Volume 53 Atlantic Geoscience Society Abstracts – 43rd Colloquium & Annual General Meeting 2017 doi: 10.4138/atlgeol.2017.006 Copyright © 2019 Atlantic Geology