Automated quantitative evaluation of minerals in the Kimmeridge Clay Formation (Dorset, United Kingdom)

RICARDO L. SILVA^{1,2}, STEPHEN P. HESSELBO³, AND R. CELESTINO³

1. Basin and Reservoir Lab, Department of Earth Sciences, Dalhousie University, Life Sciences Centre, Halifax, Nova Scotia B3H 4R2, Canada

2. Marine and Environmental Sciences Center (MARE), University of Coimbra, Rua da Matemática, nº 49, 3004-517 Coimbra, Portugal

3. Camborne School of Mines and Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom

Despite decades of research, the palaeoenvironmental and sedimentological controls leading to the unusual organic matter (OM) contents of the Kimmeridgian–Tithonian Kimmeridge Clay Formation (KCF) and contemporaneous successions around the Atlantic margins are still debated. Several studies conducted in the Dorset area of southern England, the type locality of the KCF, demonstrated the connection between OM content, depositional conditions, and astronomical parameters (eccentricity, obliquity, and precession).

The most recent cyclicity studies of the KCF conducted at Dorset use the datasets collected between 1996 and 2001 by the NERC-funded Rapid Global Geological Events (RGGE) project. These datasets, coupled with GTS2004 ages are, until today, the basis to investigate astronomical-dependent sedimentary cyclicity (including the organic-rich intervals) and build astronomically-based chronologies for the KCF and the Kimmeridgian–Tithonian time interval. New developments in analytical techniques and the recently updated numerical ages for the Kimmeridgian–Tithonian open the opportunity to, 20 years later, revisit the data collected by the RGGE project.

Our first step in this new project was to perform a pilot study focusing on automated quantitative evaluation of minerals (QEM) in several mudstone, limestone, and dolostone lithofacies from the KCF outcrop at Kimmeridge Bay (Dorset, UK). QEM uses automated image analysis combining backscatter and energy-dispersive X-ray signals to identify minerals. This method generates a complete mineral identification of the studied sample and a detailed mineralogical dataset for the studied interval, potentially addressing issues such as sedimentary provenance (heavy minerals), diagenesis (chemical variation of mineral species), and climatic variation (clay mineral assemblages).

Atlantic Geology, 2018, Volume 54 Conjugate Margins Conference 2018, August 19-22, 2018 doi: 10.4138/atlgeol.2018.014 Copyright © 2019 Atlantic Geology