dips southward. Oil and gas accumulation is controlled by local closure along secondary faults on
the north and normal flank of the described syncline.

The attitude of identifiable formations and sequence geometry as observed in the bore-holes
dicate that the major faulting be interpreted as thrusting. Thus, for the first time it is demonstrable
from subsurface data that Dott's premise of major thrusting in the Arbuckle Mountains is tenable.
In interpreting the data the writers have used minor thrust and reverse faults to account for strati-
graphic discontinuities in the bore-hole in an attempt to explain the structure as homogenous in fault
type, thus avoiding the indiscriminate use of mixed fault types. In an area so complex it is under-
stood that there is no unique solution; however, the interpretation presented is logical and in no
instance are the data violated.

The interpretation of these data indicate two major periods of diastrophism: post-Springer pre-
Deese and post-Hoxbar pre-Pontotoc. Evidence concerning the relative importance and intensities
of these orogenies is discussed. Cross sections are presented as an aid to deciphering the geological
structure and history.

Production is from the basal Bromide sand of Ordovician age at depths of 10,000-11,000 feet.
Five wells have produced approximately 640,000 barrels from January, 1947, to September 30, 1949,
the discovery well contributing 375,000 barrels of this amount.

25. GEOLOGY of ELK CITY FIELD, by R. J. Beams, consulting geologist, Oklahoma City, Oklahoma.

The field was discovered by the Shell Oil Company's J. G. Walters well No. 1 in the NE. ¼, SW. ¼
of Sec. 14, T. 10 N., R. 21 W., which was completed in November, 1947, from a reservoir at the depth
of 9,260-9,360 feet with an initial daily production of 470 barrels, 65.4° A.P.I, gravity condensate, 25
barrels fresh water, and 5,650 MCF of gas. Crude oil was discovered and first produced by the field's
second well, the Shell-Long No. 1, NE. ¼, SW. ¼ of Sec. 15, T. 10 N., R. 21 W., which was completed in
February, 1949, from a reservoir at a depth of 9,040-9,080 feet, with initial production of 2,345 barrels,
49.1° A.P.I, gravity crude oil, 70 barrels of fresh water, and 3,661 MCF of gas.

Subsequently, development has proved several reservoirs in the Missouri series of the Pennsyl-
vanian to be productive of condensate and oil at a depth range from 8,500 to 10,200 feet. The field
has a productive extent at present of 7 miles in length and 2 miles in width as determined by about
30 wells producing condensate and crude oil. The probable productive limits have not been indicated
along the axis of the field but two dry holes on the north and south flanks, respectively, restrict the
probable productive width to less than 3 miles.

In the Missouri series of the Pennsylvanian system, this field is structurally an elongate anticline
with about 400 feet of closure trending west-northwestward with several culminations along the axis.
The initial folding of this structure is unknown due to inadequate knowledge of the deeper strata,
but drilling to date has proved that the structure was present during post-Missouri pre-Virgil time.
This is shown by angularity at the base of the Virgil series. Further folding probably occurred in
Upper Pennsylvanian, Permian, and post-Permian time.

The surface beds are Permian in age and extend to a depth of about 6,500 feet. The Pennsylvanian
system is composed of more than 7,500 feet of strata extending from 6,500 to below 14,000 feet. The
deepest well drilled is the Continental's Proctor No. 1, in the center, NW. ¼ of Sec. 28, T. 10 N.,
R. 20 W., which penetrated the Pennsylvanian to the depth of 14,572 feet.

Although oil and gas showings have been encountered both above and below the Missouri series,
the field is presently being exploited from the granite wash and conglomerate reservoirs from 8,800
to 10,200 feet. These reservoir strata are interbedded with shale and marine limestone, but the series
is predominantly of a coarse clastic type which ranges lithologically from heterogeneous granite wash
to pure quartz sandstone and to limestone conglomerate. Most conceivable combinations of clastic
material are present to some degree.

One of the more reliable structure markers is a limestone at the top of the Kansas City group
located about 500 feet below the top of the Missouri series at a depth of about 8,700 feet. This lime-
stone formation is readily identified from electric logs and is commonly used as a datum for structural
interpretation since it immediately overlies the first productive reservoir of the field.

Some of the characteristics of the producing reservoirs have been established but more extensive
development is necessary to define the total number of reservoirs and their productive extent. All
data however show that this is a major field and of importance to the future development of the vast
Anadarko basin. Oil and gas recoveries in this field justify the deep drilling necessary and the further
exploration for similar accumulations.