About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract


Volume: 44 (1960)

Issue: 3. (March)

First Page: 298

Last Page: 315

Title: Subsurface Geology of North Carolina-South Carolina Coastal Plain from Seismic Previous HitDataNext Hit

Author(s): William E. Bonini (2), George P. Woollard (2)

Abstract:

Sixty new seismic-refraction measurements on the Coastal Plain of North Carolina and South Carolina were made to fill gaps in existing well and geophysical Previous HitdataNext Hit and to make a more comprehensive study of the nature and structure of the Coastal Plain floor. Thirty-nine measurements were made on the adjoining Piedmont Province to determine seismic velocities of specific rock types, thus aiding the assignment of lithologic types to basement velocities observed on the Coastal Plain.

Seismic velocities observed for gneiss, schist, slate, and granitic rocks range from 15,900 feet per second to 19,200 feet per second (4.8 to 5.8 km./sec.); diabase velocities averaged 22,500 feet per second (6.8 km./sec.); Triassic sediments from 10,400 to 14,500 feet per second (3.2 to 4.4 km./sec.); and the highest Previous HitvelocityTop correlated with Cretaceous Coastal Plain sediments is 9,600 feet per second (2.9 km./sec.).

The following conclusions are based on these studies. 1. Because basement lithologic trends and velocities are similar to those in the Piedmont, confirmed by deep wells, it is apparent that the Piedmont complex extends under the Coastal Plain sediments as far east as the present coast. 2. The Carolina Slate belt extends under the Coastal Plain and reaches a maximum width, 80 miles, in North Carolina, though the Triassic Deep River basin is in the middle. An eastern slate belt with northeast strike is postulated midway between the Fall Line and the coast under the Coastal Plain sediments. 3. The buried Florence Triassic basin is approximately 40 miles long on an east-northeast strike and limited in width to 13 miles. A new buried Triassic basin is postulated to extend from near Raeford into Johnson County, North Carolina. 4. The Cape Fear arch is a prominent basement structure with a seaward slope of 13 feet per mile on the axis. It is not reflected in the sea-level basement surface contour near the Fall Line. Sedimentary record suggests differential movement at least twice since Cretaceous time. 5. The pre-Cretaceous basement is a surface of erosion with topographic relief on the order of 200 feet. 6. The break in basement slope in eastern North Carolina must be projected seaward of Cape Fear and the South Carolina coast. 7. There is the suggestion of an east-west syncline superimposed on the steeper basement slope in eastern North Carolina and its existence is supported by a similar structure in the Coastal Plain sediments based on an earlier seismic-reflection surve .

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Member username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].