About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin


Volume: 48 (1964)

Issue: 4. (April)

First Page: 526

Last Page: 526

Title: Calcite Aragonite Problem: ABSTRACT

Author(s): W. S. Fyfe

Article Type: Meeting abstract


The fundamental stability relations of calcite and aragonite are considered in the light of: (a) calorimetric data, (b) solubility measurements, (c) direct studies of phase changes. New data of Crawford and Fyfe suggest slightly lower pressures for aragonite formation than have been formerly proposed. The difference in free energies of calcite and aragonite are small, and the effect on stability of grain size, non-hydrostatic stress, and impurities are evaluated and may be as large as ^DgrG°.

Consideration of precipitation reactions involving nucleation and growth indicates that there need be no direct relationship between fundamental stability and the order of appearance of possible phases. Ostwald's law of stages implies an inverse correlation. Data on the effects of temperature and solution composition indicate that the form of calcium carbonate precipitated may frequently reflect favorable kinetics of aragonite nucleation enhanced by calcite growth inhibition.

A basic problem in carbonate sedimentation involves the rate at which metastable aragonite undergoes transformation to calcite. Data on this reaction in the dry state are compared with similar processes in nitrates. It is suggested from study of single crystals that the dry process is essentially zero order, but a combination of structure and habit sensitivity may lead to other apparent rate laws. Nucleation normally takes place in the prism zone and proceeds via a linear boundary migration parallel to the c axis. A lack of reactivity of (001) also appears in aqueous reactions. In general, dry rates must be of no significance at the temperatures normally encountered in diagenesis unless deformation is extensive.

In aqueous solution the problem is more complex. The rate is a function of volume, pH, PCO2, salt catalysis (general) and salt inhibition (specific), and organic protection as in some fossil aragonite, and aggregate fabric (as in fossils). It is suggested that the formation of calcite from aragonite in aqueous solutions involves homogeneous nucleation and that this is the slow rate step and is controlled by some function involving Ca++ and/or HCO3- activities. Specific inhibition appears to involve inhibition of growth and several explanations are possible, but the size of the inhibiting cation appears to be critical.

End_of_Article - Last_Page 526------------

Copyright 1997 American Association of Petroleum Geologists