

understanding of fossil reefs, ideas on genesis of the Cincinnati arch, and demonstration of the great stratigraphic-paleontologic principles. We have learned only recently, however, that the formations, thickening northward and all exposed, are, in ascending order, the Brassfield limestone, Osgood-Laurel section (so-called), Waldron shale, Louisville limestone, Missisinewa shale, Liston Creek limestone, unnamed rocks, and equivalents of lower Salina rocks of Michigan. Rocks below the Waldron (Llandovery in age) are coextensive with most of the undifferentiated Niagaran and lower rocks in southernmost Michigan and with the Cedarville dolomite and lower rocks in western Ohio. Waldron and higher Niagaran rocks (Wenlock and Ludlow) mostly terminate northward in a reef bank crossing the northern quarter of Indiana. The type Huntington dolomite is a reefy facies of Missisinewa and higher Niagaran rocks, although "Huntington" has been applied throughout the Niagaran. The Salina equivalents partly abut against the bank and partly overlie and extend in two tongues south of the bank, partly complement in thickness the reef-bearing formations, and lie from north to south on lower to upper Niagaran rocks.

We postulate southward Silurian expansion of the Michigan basin prototype and consider that lower and middle Silurian sediments were deposited in the subsiding basin in southernmost Michigan and northernmost Indiana and on a relatively stable shallow-water shelf at the south. During late Niagaran and then early Cayugan time, the basin margin became better defined by southward shelf-edge sharpening that resulted from continued relatively greater subsidence northward and extensive fringing bank growth. Bank growth resulted in near-restriction of sea-to-basin circulation to two inlets corresponding to present structural sags in Cass and Jasper Counties. Post-Silurian events helping to define the present basin and the flanking Cincinnati arch include interruption and renewal of basin subsidence; probable inlet closing and deposition of lower-middle Devonian evaporite-bearing sediments, whose southern boundary marks approximately the southern margin of the Michigan basin; and differential subsidence of the Illinois basin, which imparted the southwesterly dip to part of the Silurian shelf area.

We conclude, not entirely facetiously, with the question: Is part of the Cayugan in Michigan and Indiana Niagaran in age, or is part of the Niagaran Cayugan?

PITCHER, MAX, Continental Oil Company, Ponca City, Oklahoma

EVOLUTION OF CHAZYAN (ORDOVICIAN) REEFS OF EASTERN UNITED STATES AND CANADA

Chazyan (lower middle Ordovician) reefs from the Virginias, Vermont and New York, and Quebec show changes in organic composition through time. In the evolution of reef communities, these Chazyan reefs represent assemblages or organisms which are transitional in taxonomic composition and ecologic setting between pre-Chazyan and Silurian reefs.

Early Chazyan trepostome (*Batostoma*) and cyclostome (*Cheiloporella*) bryozoans built linearly aligned reefs up to 10 feet high in shallow, agitated waters. The reef matrix of carbonate mud and skeletal debris differs markedly from the cross-bedded, mud-free skeletal carbonates adjacent to the reefs.

Middle Chazyan reefs shown an evolution of reef assemblages from a laminar stromatoporoid (*Cystostroma*)—algal (*Anthracoporella*) composition to an assemblage with a higher percentage of tabulate corals (*Billingsaria*), sponges (*Zittelella*), and a different

stromatoporoid (*Pseudostylodictyon*). At the top of the Middle Chazyan, three separate assemblages (stromatolite-calcareous alga-nautiloid, trepostome and cyclostome bryozoans, and stromatoporoid-sponge-coral) are all in close lateral contact with each other and appear to have been contemporaneous. In the Upper Chazyan, the trepostome bryozoans replace the stromatoporoids of the early assemblages and combine with the alga (*Anthracoporella*) to form a different assemblage. This succession of assemblages takes place with no apparent change in habitat.

The Lower Chazyan bryozoan reefs contain more detrital quartz and have more pronounced cross-bedding in adjacent sediments than the younger Chazyan reefs, indicating that the bryozoans existed in more agitated conditions closer to land than the later assemblages. However, close proximity of oölitic and oncolitic carbonates, dislodged and tumbled corals and stromatoporoids, erosional channels and margins cut into the reefs, and the presence of blue, green, and red algae suggest that the Middle and Upper Chazyan reefs also developed in shallow water.

A spectrum of textures in the non-reef sediments, mudstones through well washed grainstones, represents most stages from restricted to open circulation, high energy conditions in their environments of deposition.

The sequence of diagenetic events that affected the limestones is: formation of rim cement in grainstones before and concomitant with pore-filling drusy cementation, dolomitization, lithification of carbonate mud, and finally grain growth in the aragonite skeletons and carbonate mud.

POOPENOE, W. P., University of California, Los Angeles, California; and KLEINPELL, R. M., 5959 Margarido Dr., Oakland, California

AGE AND STRATIGRAPHIC SIGNIFICANCE FOR LYELLIAN CORRELATION OF THE VIGO FORMATION AND FAUNA, LUZON, PHILIPPINES

The late R. E. Dickerson, in 1921, put forward the theory that tropical Tertiary molluscan faunas evolve much more slowly than do faunas from temperate regions; hence, that the percentage of Recent species in later Tertiary tropical faunas is considerably higher than in contemporaneous faunas from temperate regions. This theory, derived from analysis of a tropical fauna of inferred Miocene age from the Philippine Islands, has been frequently cited but has never been critically evaluated.

Studies of Philippine and Indonesian later Tertiary molluscan and foraminiferal faunas collected since Dickerson's time, and accurately placed stratigraphically, indicate that the Philippine molluscan faunas Dickerson believed to be of Miocene age are more probably later Pliocene in age, with a percentage of extinct species differing not very greatly from the percentages established by Lyell and Deshayes for contemporary faunas in Europe. The theory that tropical molluscan faunas evolve at a markedly different rate than those of temperate regions is therefore without basis and is probably erroneous.

PURDY, EDWARD G., Rice University, Houston, Texas

DIAGENESIS OF RECENT MARINE CARBONATE SEDIMENTS

The diagenesis of carbonate sediments can be ascribed conveniently and naturally to pene-depositional and post-depositional processes. Pene-depositional effects