remains, are present on small banks and beaches in Barkley Sound.

Mineralogically, relict and modern sands are similar, consisting mainly of detrital plagioclase and lithic fragments. However, there are marked differences between heavy mineral suites, which led to the establishment of the Barkley Sound and continental shelf provinces. The ultimate sources of the sediments are mainly Mesozoic diorites and intermediate-basic volcanic rocks.

CHAFETZ, H. S., Dept. Geol., Univ. Houston, Houston, Tex.

MORPHOLOGIC EVOLUTION OF CAMBRIAN ALGAL MOUNDS, TEXAS, WITH CHANGING DEPOSITIONAL ENVIRONMENT

Algal mounds within the Morgan Creek Limestone (Upper Cambrian) of central Texas, exhibit an overall change in morphology with height in the section. This "evolutionary" trend is associated with a change in depositional environment. The modification in algal-mound morphology is believed to be a response of the algal communities to change in the level of water turbidity and water depth.

The earliest forms are discrete club-shaped mounds exhibiting a relatively simple, highly arched, non-branching, concentric structure. They are up to 1.5 ft thick and 2 ft in diameter. They are succeeded by larger mounds, 0.75-3 ft thick and 1-5 ft in diameter, with a complex, digitate internal structure. Near the top of the Morgan Creek Limestone are the largest algal mounds, biconvex lenses up to 5 ft thick and 25 ft in diameter. The overlying strata contain some flat, algal-laminated structures.

This evolution in mound form, a decrease in height-to-width ratio and from simple to complex internal structure, is associated with a decrease in water turbulence and a shift from shallow marine to intertidal to supratidal site of deposition. This environmental response demonstrates that changes of mound morphology can be useful in interpreting depositional environments.

CHENEY, T. M., Cheney & Assoc., New York, N.Y.

PHOSPHATE DEPOSITS OF CABINDA DISTRICT, ANGOLA, PORTUGUESE WEST AFRICA

Thick high-grade high-quality sedimentary marine phosphate deposits have been delineated in the Cretaceous-Tertiary strata of the Cabinda district of the Province of Angola, Portugal. The phosphate-bearing strata, a 1,500-ft sequence of sands, clays, phosphatic beds, and limestone, are underlain by red beds and greenish-gray shales and overlain by relatively unconsolidated sands and conglomerates. The phosphate is concentrated in 2 units: an upper phosphate zone ranging in thickness from about 45 ft to 75 ft and containing from 15 to 20% \(P_2O_5 \) and a lower phosphate zone ranging in thickness from 80 to 130 ft. These are separated by 65-390 ft of sandstones, shales and conglomerates, with minor phosphate beds. The ore in the lower zone is concentrated in 3 units which are from oldest to youngest, about 10 ft, 40 ft, and 28 ft thick. They contain from about 10 to 20% \(P_2O_5 \) and are separated by 2 waste beds which are about 15-30 ft thick.

The phosphate mineral is carbonate-fluorapatite as inorganic phosphates (pellets, oolites, and nodules), and organic phosphates (fragments of fish teeth, bones, and fish scales). The phosphate in the upper ore zone is predominantly inorganic and that in the lower ore zone is about an equal mixture of organic and inorganic. Some phosphate beds (up to 10 ft in thickness) are primarily apatite and contain as much as 38% \(P_2O_5 \); however, most are mixtures of apatite with quartz sand and silt. Within any ore zone the phosphatic beds are interbedded with sand and silt beds. High-grade and high-quality phosphate concentrates (36-38% \(P_2O_5 \)) can be produced by simple sizing and flotation from low-grade ore (10-20% \(P_2O_5 \)).

The phosphate was deposited as continuous beds in a marine basin which covered much of the Cabinda district. This basin generally shifted westward from near the Congo border on the east, so most lithologic units thicken westward. Phosphate deposition was in part controlled by folding developed before and during the period of deposition. The major known fold which strikes southeast through the middle of the area was probably the predominant structural feature controlling distribution and deposition of the phosphates. After deposition the folding continued and a strong system of southeast-trending faults developed. The fault system has resulted in the formation of several grabens, which presently form topographic highs where the major reserves of phosphate are preserved.

The major factor bearing on the economic potential of the phosphate is the leaching and oxidation of the phosphate beds by the recent downward movement of meteoric water where the beds are near the surface. Leaching extends to a maximum depth of about 300 ft and increases the grade of the beds by as much as 50%, and the grade of the apatite from 32 to 34% \(P_2O_5 \) to 38% ± \(P_2O_5 \).

CHRISTOPHER, J. E., and F. SIMPSON, Dept. Mineral Resources, Subsurface Geol. Lab., Regina, Saskatchewan

EVALUATION OF HYDROCARBON POTENTIAL FROM STRATIGRAPHIC ANALYSIS OF MESozoIC CLASTIC SEQUENCE, SASKATCHEWAN

Jurassic and Cretaceous sediments form a northward-thinning wedge of 5,000 ft maximum thickness that occupies 125,000 sq mi in south Saskatchewan. Significant petroleum production began in the 1940s. New reservoirs were located each year to total, by the end of 1969, 73 main pools in 6 principal producing units, yielding 337,089,144 bbl of crude oil and 435,851,579 Mscf of natural gas from depths of 750 to 4,700 ft.

Middle Jurassic beach and channel-fill, marine sandstones and carbonates, enclosed in less permeable carbonates and fine-grained clastic rocks yield medium-gravity oil in southwestern Saskatchewan and are prospective both west of the oil-field trend and in southeastern Saskatchewan. Medium-gravity oil also is produced in southwestern Saskatchewan from Upper Jurassic marine sandstones forming updip mesas, buttes, and interfluvues beneath a basal Cretaceous cover of locally permeable and productive continental deposits. Production of heavy oil and nonassociated natural gas is obtained where deltaic sandstones of the Cretaceous interdigitate with marine shales. The sequence is prospective throughout central Saskatchewan, particularly where sandstone-body trends may be related to major structural features. In west-central Saskatchewan, light oil and nonassociated gas are produced from sandstone bodies of good economic potential. These sandstones are hydraulically isolated within a thick sequence of Lower Cretaceous marine shales and exhibit structural features that closely reflect the texture of the dissected