field in the United States, is in the northern Coast Ranges of California about 75 mi north of San Francisco. In the Salton Sea area of the Imperial Valley, California, large flows of steam and geothermal fluids have been obtained, currently uneconomic because of high-mineral content. Twenty miles south of the Mexican border in the same basin, the Cerro Prieto geothermal field produces 75 megawatts and appears to be capable of supplying energy for considerably more power. In the Valles Caldera, near Los Alamos, New Mexico, discovery of a new field has been indicated by recent exploratory drilling. Flows of hot water and flashed steam have been recorded in several areas in Nevada, none of which have proved commercial.

Exploration for geothermal resources is in the early stage of activity. A total of 149 exploratory wells has been drilled in 55 different areas. Many of these wells were shallow and not adequately tested. It is too early to predict what the success ratio will be until deeper and more conclusive tests are drilled. To January 1974, exploration has been hampered by the unavailability of public lands, which cover well over half of the prospective territory.

Leasing activity during the last few years, coupled with geologic and geophysical work by private industry, and successful utilization of 150 to 225°C waters by the heat-exchange method, suggest that there will be an early stage of activity. A total of 149 exploratory wells have been carried out since 1966 by the Geological and Geophysical Institute of Korea (GMIK) and since 1969 by oil companies who obtained concessions on seven blocks from the Korean government.

The GMIK has conducted reconnaissance seismic and magnetic surveys for general study of submarine geology. Oil companies have conducted preliminary and detail seismic, magnetic, and gravimetric surveys. Wildcat drilling was started in 1972 and four holes were drilled by three oil companies.

Submarine geology of the offshore area can be summarized as follows. The Yellow Sea area has Tertiary sedimentary rocks with thicknesses of more than 1,000 m with several basin structures separated by uplifted basement or intrusive igneous rocks. The East China Sea and southern part of Japan Sea have Tertiary sedimentary rocks with thicknesses of more than 2,000 m with northeast-southwest zonal structure and folded and faulted structures in Tertiary beds.

In the Yellow Sea area, Tertiary sedimentary rock in Pohang offshore area is less than 1,000 m thick and extends northward almost 100 km. Sedimentary rocks, more than 3,000 m thick and of probable Cenozoic age, are present on the continental slope.

Petroleum potentials in offshore Tertiary strata must be studied further before final conclusions can be reached. Even so, rocks with high-organic content occur in the Yellow Sea area, and in the East China Sea and the Japan Sea areas good reservoir rock and potential structures for hydrocarbon accumulation have been detected. Further drilling work is recommended to discover hydrocarbons and to reevaluate the submarine geology and structure.

KIM, BONG KYUN, Seoul Natl. Univ., Korea

PETROLEUM POTENTIAL OF KOREAN OFFSHORE

Major offshore areas widely developed around the Korean Peninsula are in the Yellow Sea off the west coast, East China Sea off the south coast, and in narrow belts in the Japan Sea off the east coast. Geologic and geophysical surveys in these Korean offshore areas have been carried out since 1966 by the Geological and Mineral Institute of Korea (GMIK) and since 1969 by oil companies who obtained concessions on seven blocks from the Korean government.

The GMIK has conducted reconnaissance seismic and magnetic surveys for general study of submarine geology. Oil companies have conducted preliminary and detail seismic, magnetic, and gravimetric surveys. Wildcat drilling was started in 1972 and four holes were drilled by three oil companies.

Submarine geology of the offshore area can be summarized as follows. The Yellow Sea area has Tertiary sedimentary rocks with thicknesses of more than 1,000 m with several basin structures separated by uplifted basement or intrusive igneous rocks. The East China Sea and southern part of Japan Sea have Tertiary sedimentary rocks with thicknesses of more than 2,000 m with northeast-southwest zonal structure and folded and faulted structures in Tertiary beds.

In the Japan Sea area, Tertiary sedimentary rock in Pohang offshore area is less than 1,000 m thick and extends northward almost 100 km. Sedimentary rocks, more than 3,000 m thick and of probable Cenozoic age, are present on the continental slope.

Petroleum potentials in offshore Tertiary strata must be studied further before final conclusions can be reached. Even so, rocks with high-organic content occur in the Yellow Sea area, and in the East China Sea and the Japan Sea areas good reservoir rock and potential structures for hydrocarbon accumulation have been detected. Further drilling work is recommended to discover hydrocarbons and to reevaluate the submarine geology and structure.

KIM, OK JOON, Geology Dept., Yonsei Univ., Korea, and S. M. LEE

MINERAL RESOURCES OF KOREA

The most productive mineral resources, except fuel, in South Korea are gold, silver, lead, zinc, copper, tungsten, molybdenum, iron, fluorite, graphite, kaolin, talc, and pyrophyllite. These mineral deposits are related closely to the geologic settings and tectonic patterns of the peninsula.

South Korea is divided tectonically into four segments. The Kyonggi-Ryangnam massif is composed of Precambrian schists and gneisses and constitutes a base for the succeeding formations. The Okcheon geosynclinal zone in the Kyonggi-Ryangnam massif stretches from southwest to northeast diagonally across the peninsula in a direction known as the Sinian cross. Its northeastern part is composed primarily of Paleozoic to early Mesozoic sedimentary formations and the southwestern part of the late Precambrian Okcheon metamorphic series. The Kyongsang basin occupies the southeast and southwest of the peninsula and is