stratigraphic trap in the Tomahawk field. The P-2 zone is approximately 100 ft (30 m) thick, with the main field pay developed in the upper 50 ft (15 m). This interval is a sucrosic, vugular dolomite in which two predolomitization facies can be recognized, an upper oolitic limestone facies and an underlying crinoidal, argillaceous limestone facies. A dolomite bed near the base of the P-2 zone has 4 to 15 ft (1 to 5 m) of porosity over most of the field and is productive in several local areas. Productive porosity in the P-2 zone ranges from 4 to 10% and the thickness of net pay ranges from 10 to 45 ft (3 to 14 m). Good permeability is dependent upon fractures. Several locally successful techniques for fracture detection are used.

SIEMS, PETER L., Univ. Idaho, Moscow, ID

Uranium in Challis Volcanic Field, Idaho

Recorded uranium production and known resources in the Challis Volcanics and the Challis-related epizonal silicic plutons of Eocene age are small, but the potential resource is moderately high. Former production was from arkosic conglomerates and sandstones at the base of the Challis Volcanics in Stanley basin and from a scheelite deposit on the contact of the Summit Creek stock. Uranium mineralization also occurs in water-laid rhyodacite pumice-rich tuffs, in the Twin Springs pluton, in the Beaverhead stock, and in shear zones in the Castro granite.

The Challis Volcanics are potash-rich, calc-alkaline rocks of Eocene age that are small, but the potential resource is moderately high. Former production was from arkosic conglomerates and sandstones at the base of the Challis Volcanics in Stanley basin and from a scheelite deposit on the contact of the Summit Creek stock. Uranium mineralization also occurs in water-laid rhyodacite pumice-rich tuffs, in the Twin Springs pluton, in the Beaverhead stock, and in shear zones in the Castro granite.

The Challis Volcanics are potash-rich, calc-alkaline rocks of Eocene age that are small, but the potential resource is moderately high. Former production was from arkosic conglomerates and sandstones at the base of the Challis Volcanics in Stanley basin and from a scheelite deposit on the contact of the Summit Creek stock. Uranium mineralization also occurs in water-laid rhyodacite pumice-rich tuffs, in the Twin Springs pluton, in the Beaverhead stock, and in shear zones in the Castro granite.

The Challis Volcanics are potash-rich, calc-alkaline rocks of Eocene age that are small, but the potential resource is moderately high. Former production was from arkosic conglomerates and sandstones at the base of the Challis Volcanics in Stanley basin and from a scheelite deposit on the contact of the Summit Creek stock. Uranium mineralization also occurs in water-laid rhyodacite pumice-rich tuffs, in the Twin Springs pluton, in the Beaverhead stock, and in shear zones in the Castro granite.

The Challis Volcanics are potash-rich, calc-alkaline rocks of Eocene age that are small, but the potential resource is moderately high. Former production was from arkosic conglomerates and sandstones at the base of the Challis Volcanics in Stanley basin and from a scheelite deposit on the contact of the Summit Creek stock. Uranium mineralization also occurs in water-laid rhyodacite pumice-rich tuffs, in the Twin Springs pluton, in the Beaverhead stock, and in shear zones in the Castro granite.