Opening of Tectonic Evolution of Northern Gulf Coast

NEWPORT, R. LEO, Jones Exploration Co., Houston, TX

Age, Depositional Environment, and Organic Metamorphism of Woodbine (Cretaceous) of Polk County, Texas

Cores and cuttings from six wells in Polk County, Texas, were studied to determine the age, depositional environment, and organic maturation history of the Woodbine hydrocarbon producing interval and superjacent Rapids Shale.

Palynologic analysis of the Woodbine core samples indicates a late Albian to earliest Cenomanian age for the section. Palynomorphs recovered from the Rapids Shale samples indicate a much younger age than the Woodbine with the unconformity representing possibly as much as a full stage.

The depositional environment of the Woodbine section is interpreted from palynologic, sedimentary structure, petrographic, and seismic data to have been on a prodelta continental shelf seaward to a topographic break in the shelf formed by an earlier (Early Cretaceous) carbonate buildup.

Organic maturation studies of the Woodbine samples indicate vitrinite reflectance (R_0) values ranging from 1.1 to 1.4 with thermal alteration index (TAI) values of 2.3 to 3.2. The organic matter distribution consists of abundant vitrinite and inertinite with mixed matter assemblages less common. Two samples are from intervals that have produced hydrocarbons. These samples had R_0 values ranging from 1.1 to 1.2 with mixed matter distributions. Theoretical studies indicate that such samples should be the source of wet gas. Wet gas is precisely what these sample intervals have produced.

Preliminary Petroleum Source-Rock Assessment of Pre-Punta Gorda Rocks (Lowermost Cretaceous-Jurassic?) in South Florida

Reconnaissance geochemical analyses—total organic carbon (TOC) and Rock-Eval pyrolysis—were conducted on drill cuttings of pre-Punta Gorda rocks in seven widely scattered boreholes in south Florida to assess the petroleum source-rock potential. The rocks judged to have the best source-rock characteristics, by virtue of their relatively high TOC contents (0.4 to 3.2 wt. %) and relatively high pyrolytic hydrocarbon yields (0.4 to 16 mg/g rock), occur chiefly in the upper half of the Pumpkin Bay carbonates (upper Coahuilan) and to a lesser extent in the Alva, the topmost unit of the overlying Lehigh Acres carbonates (Trinity 'F' of Exxon). Geographically, the richest of these rocks are located in the vicinity of the Lehigh Park field and in the lower part of the Florida Keys.

The rocks in the lower part of the Pumpkin Bay and in the underlying Bone Island (lower Coahuilan) and Wood River sequences (Jurassic?) have low TOC contents (<0.3 %) and low pyrolytic hydrocarbon yields (<0.3 mg/g rock). These data suggest that the potential for oil is poor for rocks below the middle Pumpkin Bay. Potential for natural gas, however, cannot be ruled out even though the levels of organic matter seem insufficient. Gas shows have been reported in at least one well at 15,700 ft (4,785 m) in the Phillips-Mobil 1-C Seminole; hence, the pre-Punta Gorda rocks of south Florida may have some potential for gas, depending on factors such as porosity, permeability, and the distribution of traps.

PILGER, REX H., JR., Louisiana State Univ., Baton Rouge, LA

Opening of Tectonic Evolution of Northern Gulf Coast

Several lines of evidence suggest that the Gulf of Mexico opened synchronously and in the same northwest-southeast direction as the central North Atlantic, from about 180 to 130 Ma. The Atlantic and Gulf spreading centers were linked by left-lateral transform faults across the Florida-Bahamas platform. To the west, spreading was accommodated by left-lateral transform faults (megashears) across Mexico.

The basin and uplift structure of the northern Gulf Coast can be interpreted in terms of northwest-southeast rifting before the Gulf and Atlantic opening began. Alternatively, early rifting could have been a result of north-south motion between North America and Africa-South America. The latter inference is suggested by correlations between pre-Mesozoic Florida and Africa basement terranes as well as the crustal fabric of the northern Gulf Coast.

Basin formation in the northern Gulf Coast probably involved shallow, closely spaced graben-horst formation combined with larger scale ductile thinning of the lower crust during rifting. Following the end of rifting the sedimentary record indicates that the basin subsided in an exponential manner, as would be predicted from thermal models of sedimentary basin formation.

ROSS, M. A., Delta Drilling Co., Tyler, TX, and C. L. MCNULTY, Univ. Texas at Arlington, Arlington, TX

Some Microfossils of Tamaulipas Limestone (Lower Cretaceous) in Santa Rosa Canyon, Sierra de Santa Rosa, Nuevo Leon, Mexico

About 2,000 m of Upper Jurassic (Tithonian) to Upper Cretaceous (Maestrichtian) rocks are exposed in Santa Rosa Canyon. The Tamaulipas is composed of resistant, light-gray to black, thin to thick-bedded, well-indurated lime mudstones about 800 m thick.

A medial unit (64 m) of black, laminated, thin-bedded lime wackestones allows division of the succession into three parts which appear to be homotaxial with the lower Tamaulipas, the La Pena, and the upper Tamaulipas.

Microfossils are rare to sparse in the lowest unit but are abundant in the medial unit and common in the upper unit. Extreme induration has prevented disaggregation and recovery of individual specimens; consequently this study is limited to thin sections of the rock. The general aspect of the fauna is pelagic and is dominated by radiolarians and foraminifers, although colomiellids, nannoconids, calcispheres, and pelagic pelecypods (?) are abundant at some levels in the upper unit.

Identifiable and chronostatigraphically useful taxa include: Coloniella mexicana Bonet, C. rota Bonet, Feuvusella washiensis (Carsey), Globigerinelloides algerianus Cushman and Ten Dam, G. barri (Bolli, Loeblich, and Tappan), G. ferreolensis (Moulaire), Planomalina cheniouriensis (Sigal), Microcalamoideas diversus (form B) Bonet, M. diversus (form C) Bonet, Nannoconus steinmanni Kampfner, and N. wassalli Bronnimann.

The distribution of these taxa indicates that virtually all of the lower unit of the Tamaulipas is Hauterivian and Barremian. The middle unit (= La Pena?) is Aptian, and the upper unit is lower Albian. Some of the earliest Albian may be missing.

SCHIEBOUT, JUDITH A., Louisiana State Univ., Baton Rouge, LA

Effects of Sea Level Changes on Distribution and Evolution of Early Tertiary Mammals

Sea level changes in the early Tertiary affected mammalian
distribution and speciation by affecting paleogeography, climate, and deposition. Intercontinental links were broadened during regressions. Transgressions had moderating effects on climate, produced by lessening continentality. A middle Paleocene major regression probably marked the withdrawal of the North American interior seaway, and its absence was linked to Paleocene-Eocene transition climatic warming and drying. Shifts in sea level shifted loci of deposition, affecting rates of animal burial and diagenesis.

Sea level effects on shape and disjunction of ranges on the Gulf Coast were of particular importance because southern sources were likely for the wave of new forms, many representing the first appearance of modern mammal orders, which marks the Paleocene-Eocene transition in northern sites. Gulf Coast regressions exposed a broad continental shelf producing terrestrial conditions analogous to those of the broad, stable epicontinental seas produced by major transgressions. An embayment in Texas at the location of the Cretaceous interior seaway could have functioned to produce eastern and western Gulf Coast terrestrial provinces as the Mississippi embayment did in the Pleistocene. Transgressions reduced the area of lowlands, constricted ranges, and promoted speciation by isolating demes in highlands. Regressions could also promote speciation, by lowering water tables, increasing the extent of savannas, and thus fragmenting the habitats of forest dwellers. The effects of sea level changes are important in the burst of mammalian speciation that characterizes the early Tertiary, just as they are in marine evolution.

SOLIS L., RAUL FERNANDO, Bur. Econ. Geology, Univ. Texas at Austin, Austin, TX

Late Tertiary and Quaternary Depositional Systems in Subsurface of Central Texas Coastal Plain

Late Miocene, Pliocene, and Pleistocene deposits in the subsurface of the central Texas coastal plain were subdivided into six operational units equivalent to the surface-defined Fleming, Goliad, Willis, Lissie, and Beaumont Formations. These sedimentary units constitute the last major depositional episodes in the northwestern Gulf Coast basin. Late Miocene deposition is represented by transgressive shelf and shallow-marine shales overlain by progradational clastics of the upper part of the lower Fleming, upper Fleming, and lower Goliad-Willis units. A minor Pliocene transgressive event is represented by downdip, marine embayment facies of the upper Goliad-Willis unit. Finally, Pleistocene highstand fluviodeltaic progradation (Lissie and Beaumont units) terminated pre-Holocene sedimentation.

Interpretation of sediment distribution, established by constructing a series of net and percentage sand-maps for each unit, permits delineation of the following main depositional systems: fluvial braided-meander belt and flood basin; fluviodeltaic; lagoon; large marine embayments; small bayhead deltas; thick wave-dominated deltas; strand plain; and thick stacked coastal barriers. Western fluviodeltaic systems were consistently less active than the eastern ones, which deposited greater volumes of sand.

Inherited, subtle structural influence of the deeper seated San Marcos arch had some effect on sediment distribution and paleogadients. Shallow extensions of the deeper Vicksburg, Frio, and Miocene fault systems display respectively decreasing (from 400 ft or 122 m) displacements in the section studied. Faults clearly were a central factor in the distribution of fluvial, deltaic, and strike-oriented coastal sands.

Most sands in the updip parts of the operational units contain fresh water, whereas those of downdip areas contain predominantly brackish to saline waters. The area with greatest reservoir potential for fresh water includes Victoria, Jackson, Wharton, and Colorado Counties. Possible use of sealed, thick coastal sands in the lower Fleming unit for the disposal of industrial and municipal liquid-waste is recommended.

TRIPPET, ANITA R., U.S. Geol. Survey, Corpus Christi, TX

Characteristics of Diapirs on Outer Continental Shelf-Upper Continental Slope Boundary, Northwest Gulf of Mexico

An 18,000 km² segment of the shelf-slope boundary off southwest Louisiana was studied using high resolution seismic profiles. Mapping of the distribution of diapirs, faults, synclinal and anticlinal axes, and the configuration of the subsurface surface of diapirc material revealed significant patterns.

On the outer continental shelf, diapirs are characteristically either buried or exposed and severely eroded. Erosional surfaces on upper-slope diapirs can be used to estimate subsidence rates. The complex bathymetric contours on the upper slope are the result of diapirc activity and show characteristic fault patterns and relations to pierced sediments that can be attributed to gravity-induced movement of salt downslope triggered by the weight of overlying sediment prisms. Salt is present at shallow depths on the upper slope and is usually capped by a sheath of seismically chaotic, fine-grained sediments. Diapirism and the loading of sediments in depositional basins are interdependent processes actively reshaping the shelf-slope boundary through marginal accretion.

VAN HEERDEN, IVOR LL., JOHN T. WELLS, and HARRY H. ROBERTS, Louisiana State Univ., Baton Rouge, LA

Evolution and Morphology of Sedimentary Environments, Atchafalaya Delta, Louisiana

Progradation of Atchafalaya Delta, one of the most dynamic geologic events of the century, has produced a sizable new sand body on the Louisiana coast. Evolution of depositional environments in Atchafalaya Bay has been determined from analysis of sediment cores and bathymetric surveys. Use of X-ray radiography has made possible recognition of a number of subenvironments within major environments. Atchafalaya Delta exhibits all of the sedimentary environments recorded in earlier Mississippi delta lobes. However, excellent stratigraphic control and current knowledge of the processes of deposition in Atchafalaya Bay make it possible to link process-response better in this than in other Mississippi subdeltas. In contrast to the modern Mississippi subdelta, the Atchafalaya should prograde more rapidly, form thinner sand bodies, and eventually cover a wide area, much like the Lafourche, St. Bernard, and Teche delta lobes.

WELLS, JOHN T., and G. PAUL KEMP, Louisiana State Univ., Baton Rouge, LA

Atchafalaya Mud Stream and Recent Mud Flat Progradation: Louisiana Chenier Plain

The Chenier plain coast of southwestern Louisiana has been recognized as the downdrift recipient of fine-grained sediment derived from the Atchafalaya River, to the east. Carried as suspended sediment in the Atchafalaya "mud stream," silts and clays are now accumulating as nearshore deposits of gel-like fluid mud along what has historically been one of the most