mineralogy. For example, the porous but smooth surface of an echinoid (magnesian calcite) dissolves much more slowly than aragonitic coral and gastropod grains, which have more complex microstructures.

The presence of dissolved magnesium enhances rates of dissolution, but does not strongly affect the relative reactivity between different grain types. The absolute dissolution rates show a strong progressive decrease in magnesium-depleted solutions.

Thus, assumption of mineralogic control over grain reactivity during early diagenesis is an oversimplification. Microstructure and solution chemistry emerge as important variables with predictive power for modeling both porosity development and diagenetic evolution within carbonate sequences.

Diagenetic Fabric and Structures in Ordovician Slope Limestones

The very thin continuous bedding characteristic of the calcareous Ordovician slope sediments from western Newfoundland and Virginia is not a primary depositional fabric but a severe diagenetic modification caused by extensive physical compaction and pervasive pressure solution. The very thin-beded (0.1 to 0.5 cm) units commonly are only 20 to 30% carbonate, but occur in a sequence with thicker (1 to 20 cm) limestone turbidite layers.

Some groups of very thin layers thicken laterally into elongate limestone lenses composed of quartzose, peloidal, and radiolarian-sponge spicule packstone to wackestone. Layers in the lenses have a primary depositional fabric. Each layer thins away from the lens by 50 to 80%, but is generally traceable for over tens of meters or from lens to lens where they are repetitive along bedding. As a layer thins away from a lens, fine carbonate is lost and peloids and most other carbonate grains are partly to completely pressure solved against more resistant grains or along fine solution seams. Radiolaria become crushed and spicules reoriented from essentially random to parallel with layering. Individual layers are commonly traceable from lens to lens with no change in amount of insoluble quartz, spicules, or other resistant grains.

The thickened layers associated with limestone lenses are interpreted to be remnants of once-continuous layers that have been dramatically thinned through pervasive pressure solution.

Further, there are numerous very thin layers that cannot be traced into a thicker limestone-rich zone. These layers are very similar to those which pass into thicker lenses. It is very probable that each of these layers is a remnant of a once much thicker carbonate-rich layer.

WANLESS, HAROLD R., Rosenstiel School Marine and Atmospheric Sci., Univ. Miami, Miami, FL
Diagenetic Fabric and Structures in Ordovician Slope Limestones

The Hogklint reefs of Gotland occur within a shallowing-upward sequence and are developed in the outer zones of a carbonate wedge adjacent to a shale wedge. Shoal and peritidal sequences are the major carbonates which occur in the inner parts of the wedge and are preferentially associated with erosion surfaces.

The Hogklint reefs show carbonate fabrics that are inferred to indicate synchronous marine cementation of the reefs. These fabrics are: (1) pseudofibrous calcites that are believed to have replaced acicular/fibrous cements with original aragonite and/or Mg-calcite mineralogy, (2) pelmiparite-pelmicrite areas, (3) stromatolite-like crusts, and (4) early micritic cements. The reefs also show evidence of subaerial exposure by the occurrence of erosion surfaces at the top of the reefs, dissolution cavities, and vadose crystal silt in fills in cavities in the algal biofacies which cap the reefs.

WARREN, JOHN K., Univ. Texas at Dallas, Richardson, TX
Hydrologic Setting, Occurrence, and Significance of Gypsum in Late Quaternary Salt Lakes, South Australia

The most extensive dolomitization (up to 48 wt. %) is in the only reef-facies core from the middle unit. This core is calcite and dolomite in contrast to three cores in the back-reef facies which are calcite and aragonite. Dolomite occurs in a variety of forms including: (1) coarsely and finely crystalline pore-lining cement, (2) finely crystalline replacement of matrix and bioclasts, and (3) internal sediment in dissolution cavities. Most of the dolomite cement is precipitated in molds of aragonitic fossils. There are three types of dolomar cement: (1) limpid euhedral to subhedral crystals (Ca37 Mg43 CO3100), (2) zoned crystals of dolomite and calcian dolomite (Ca43 Mg27 CO3100), and (3) corrugated layers of alternating calcian dolomite and calcite. The calcian-dolomite layers in the zoned crystals and in the corrugated layers are partly dissolved. Typically, adjacent pores within the same sample contain different types of dolomite and dolomite-calcite intergrowths.

The complex mineralogy of the middle unit is evidence that this limestone was subjected to several changes in phreatic-water geochemistry. Concurrent work by Hanshaw and Back demonstrated the existence of a geochemically active and fluctuating phreatic environment in the zone of freshwater and seawater mixing immediately inland from the Yucatan coastline today. Similar mixing zones must have passed through the Pleistocene limestones during past sea-level changes. The geologic setting, textures, and mineralogy of these young limestones suggest that their complex variety and occurrence of dolomite is best explained by mixing-zone diagenesis.

WATTS, NIGEL R., Texaco Canada Resources Ltd., Calgary, Alberta, Canada
Early Carbonate Fabrics in Silurian Reefs of Gotland, Sweden

Diagenetic Fabric and Structures in Ordovician Slope Limestones

The Hogklint reefs of Gotland occur within a shallowing-upward sequence and are developed in the outer zones of a carbonate wedge adjacent to a shale wedge. Shoal and peritidal sequences are the major carbonates which occur in the inner parts of the wedge and are preferentially associated with erosion surfaces.

The Hogklint reefs show carbonate fabrics that are inferred to indicate synchronous marine cementation of the reefs. These fabrics are: (1) pseudofibrous calcites that are believed to have replaced acicular/fibrous cements with original aragonite and/or Mg-calcite mineralogy, (2) pelmiparite-pelmicrite areas, (3) stromatolite-like crusts, and (4) early micritic cements. The reefs also show evidence of subaerial exposure by the occurrence of erosion surfaces at the top of the reefs, dissolution cavities, and vadose crystal silt in fills in cavities in the algal biofacies which cap the reefs.