

organic-rich marlstone (oil shale). The gypsum and limestone were precipitated in a low energy, hyper-saline, subaqueous environment, while the shale and organic-rich marlstone were deposited in a relatively fresh, low energy, subaqueous environment. The siltstone and dolomite were deposited in intertidal to supratidal conditions. Sandstone and conglomerate were deposited in a high flow regime fluvial environment. Although salt casts are common, no halite was observed in the area. Breccias occur as the result of post-depositional processes.

During the late Middle Permian, the depocenter of the Minnekahta sea shifted westward causing the beginning of Spearfish deposition in the area. Subsequent local fluctuations of the shoreline altered environments from shallow marine to terrestrial. Throughout accumulation of the formation, deposition continued in this fashion, similar to conditions currently observed in the Persian Gulf region.

SANDBERG, PHILIP A., Univ. Illinois, Urbana, IL

Evaluation of Ancient Aragonite Cements and Their Temporal Distribution

Literature on carbonate diagenesis has, in general, suggested that cements of virtually any geologic age and morphology were derivable from alteration of aragonite precursors similar to modern submarine aragonites. That interpretation requires for the fibrous fringe cements in many Jurassic and Mississippian oolites, for example, an inference of pseudomorphing of fibrous aragonite by fibrous calcite. Such an assumption of pseudomorphing is unsupported by any examples from calcitization of known aragonite cements (botryoids), ooids, or skeletons. Aragonite relics in calcitized botryoidal cements in the Pennsylvanian of Kansas are comparable to relics in calcitized ooids and skeletons. This underscores the similarity of calcitization behavior of aragonites of diverse origins.

Radial-fibrous (RFC) and fascicular-optic (FOC) calcites are generally interpreted as replacement, by two different modes, of fibrous cement precursors. Those supposed precursors are often inferred to have been aragonite, based on the common fibrous habit in modern aragonite cements. Samples of the Pleistocene Ryukyu limestone (Japan) contain a cement fringe of randomly mixed RFC and FOC on aragonite skeletal substrates and sometimes as a second generation cement on a loose fringe of acicular aragonite. This indicates that RFC and FOC are not distinctive in genesis, and they cannot have originated by replacement of aragonite by proximal to distal migration of a thin film diagenetic front. Geometric considerations also indicate that that generally accepted model is untenable.

Ancient cements whose original aragonite mineralogy can be confidently recognized show a non-random, clumped distribution with respect to geologic time. Bases for such confident recognition of original aragonite include preservation as still aragonite or as replacement calcite irregularly crosscutting original structure and containing relic aragonite inclusions and/or elevated strontium content (with or without distinctive original external morphologies, such as botryoids or square-end rays). Such cements occur in rocks of the Lower Cambrian and Upper Mississippian to Upper Triassic and perhaps Lower Jurassic. Cenozoic cements have not been very closely investigated, and the Cenozoic picture may be rather complex. Nevertheless, the general pattern which emerges appears to parallel that I have found for ooids: aragonite restricted to the Cenozoic, Late Mississippian to Early Jurassic, and Early Cambrian (and late Precambrian).

SAVRDA, CHARLES E., DAVID J. BOTTJER, and DONN S. GORSLINE, Univ. Southern California, Los Angeles, CA

Euxinic Biofacies in Anoxic Basins: San Pedro and Santa Barbara Basins, California Continental Borderland

As part of an ongoing study of anoxic California continental borderland basins, the relationships between dissolved oxygen content, sediment fabric, biogenic structure distribution and size trends, and species richness in the San Pedro and Santa Barbara basins were examined. Results of these analyses are essentially identical to those of a previous study of the adjacent Santa Monica basin. The relationships observed in these basins will be useful as criteria for the reconstruction of ancient anoxic basins, the strata of which have high potential as hydrocarbon source beds.

Six sediment fabric types, subjectively classified on the basis of degree of preservation of primary sedimentary structures versus degree of destruction by biogenic activity, were observed in box core x-radiographs. These are distributed concentrically around the centers of the basins with a progressive trend toward increased preservation of primary structures with depth and decreased oxygen content. Intermediate sediment fabric types are formed by the short-term fluctuations of the position of the dysaerobic-anaerobic boundary in the water column.

Box core x-radiograph analysis of biogenic structures indicates that most burrow types occur over a wide range of depth and dissolved oxygen content. However, burrow diameter analysis indicates that burrow size decreases with a decrease in dissolved oxygen content. Bottom photograph analysis of surface biogenic structures indicates that aerobic and upper dysaerobic environments are characterized by abundant tracks and trails, lower dysaerobic environments are dominated by burrow openings, and anaerobic sea floor lacks any visible biogenic structures. Size trends of burrow openings indicate a decrease in size with decreased oxygen. However, organism-sediment interactions and environmental energy also exert a control on burrow-opening size.

Bottom photograph analysis of visible organisms shows that aerobic and upper dysaerobic environments are dominated by urchins, while lower dysaerobic environments are characterized by holothurians, polychaetes, small arthropods, and the small gastropod, *Mitrella permodesata*. Anaerobic surface environments are essentially devoid of visible macrobenthic organisms. Although these trends reflect changes in dissolved oxygen content, evidence suggests that grain size also exhibits control on organism distribution.

Species richness data from the upper portion of box cores indicates that diversity of macrobenthic organisms generally decreases with decreased oxygen content. The greatest decrease in diversity is coincident with the shelf break rather than the aerobic-dysaerobic boundary (1.0 mL/L dissolved oxygen). A loss of macrobenthic organisms that significantly affect sediment fabric occurs at the dysaerobic-anaerobic boundary.

Although observations made in these modern basins support parts of previously developed biofacies models designed for use in reconstruction of ancient anoxic basins, several aspects of these models now appear to be invalid. In particular, there appears to be no definitive change in any of the studied parameters at the aerobic-dysaerobic boundary. The use of sediment fabric, biogenic structure trends, and fossil evidence may aid in the reconstruction of ancient basins providing that controlling factors other than oxygen are thoroughly considered.