About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract


Volume: 68 (1984)

Issue: 4. (April)

First Page: 461

Last Page: 461

Title: Assessment of Role of Metamorphic Remobilization in Genesis of Uranium Ores from Ralston Buttes Area, Colorado: ABSTRACT

Author(s): Subir K. Chatterjee, John C. Fountain

Abstract:

The Ralston Buttes mining district, the principal source of commercial uranium in the Front Range since the late 1940s, is located northeast of Golden and southeast of the Front Range mineral belt. Uranium ore occurs in veins emplaced in fault breccia in Precambrian metamorphic rocks. The progenitors of the metamorphic rocks are a possible source for the uranium. Hornblende gneisses of the Idaho Springs Formation is the major rock type in the area, thus its origin is a major consideration in assessing the quantity of uranium that might have been contributed by metamorphic processes. To evaluate this, 41 rock samples (19 hornblende gneisses, 7 biotite gneisses, 5 chlorite gneisses, and 10 metapelites) were analyzed for major elements, and 3 rock samples (16 hornblende gnei ses, 8 biotite gneisses, 4 chlorite gneisses, and 5 mica schists) were analyzed for trace metals (Rb, Sc, Zr, V, Ni, Co, Cr, Ba, U, and Th). Four samples of hornblende gneiss and 1 sample of mica schist were also analyzed for rare earth elements.

Major elements and rare earth data indicate that the hornblende gneiss was derived from sediments and tholeiitic basalts. Trace element data suggest a volcanic provenance for these sediments. Rare earth patterns and uranium and thorium abundances of metapelites are similar to average North American shales. Low uranium and thorium values and low thorium-uranium ratios in hornblende gneisses and mica schists preclude large-scale uranium remobilization during metamorphism of these source rocks.

End_of_Article - Last_Page 461------------

Copyright 1997 American Association of Petroleum Geologists