About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin


Volume: 69 (1985)

Issue: 2. (February)

First Page: 284

Last Page: 284

Title: High-Resolution Seismic Stratigraphy of North Carolina Continental Margin, Cape Fear Terrace: Sea Level Cyclicity, Paleobathymetry, and Gulf Stream Dynamics: ABSTRACT

Author(s): Thomas D. Matteucci, Albert C. Hine, Stephen W. Snyder, Stanley Riggs

Article Type: Meeting abstract


A high-resolution seismic stratigraphic study of the Cape Fear Terrace (outer continental shelf off North Carolina) combined with biolithostratigraphic data has yielded a chronostratigraphic framework of the Quaternary sequences that comprise this portion of the North American continental margin.

The Cape Fear Terrace is an anomalous, point-source, prograding, shelf-margin feature that has experienced positive relief through much of the Quaternary. This upbuilding or outbuilding followed a period of active, early Pliocene, submarine erosion in which the ancestral Gulf Stream cut an erosional path beneath the present shelf margin. The terrace was originally built up during a relative lowstand of sea level with the construction of a shelf-edge deltaic feature. Severe modification of this delta front occurred during a relative highstand of sea level as the Gulf Stream began to impinge upon the margin. The anomalously thick accumulation of shelf-edge sediments acted as a barrier to flow, inducing complex flow patterns of the Gulf Stream. Excavation of these sediments yielded a ter ace feature with preferential erosion on the upstream side.

Subsequent deposition in the terrace region may have resulted during fairly highstands of sea level, as evidenced by the presence of active seaward-prograding sand waves in the terrace region today. Once this shelf-edge bathymetric irregularity (the terrace) had been established, the Gulf Stream acted as a dynamic force inducing cellular flow structures within the shelf environment, which enabled sediments to be transported seaward along the paleo-shoals complex.

End_of_Article - Last_Page 284------------

Copyright 1997 American Association of Petroleum Geologists