eroded valley. The present structure at the top of the J sandstone (stratigraphically older than the D sandstone) is a structural low in the area where D valley-fill sandstones occur. The trend and location of the low at J level are identical to the trend and location of the D valley-fill deposits. Thus, the present low at the J level confirms the paleostructure interpretation.

This new model for D sandstone deposition, incorporating paleostructure and sea level changes, provides a new idea for petroleum exploration in the Denver basin.

SPINKEL, DOUGLAS A., Placid Oil Co., Salt Lake City, UT

Basement Fault Configurations, Wyoming Province

For many basement-cored folds and related mountain flank faults in the Wyoming province, locally balanced cross sections can be constructed using structural relief and line lengths in the sedimentary cover rocks. By preserving the length of the upper basement surface, possible basement fault movement can be inferred. This faulting includes: (1) motion along a reverse fault which yields a folded upper basement surface, and (2) displacement distributed along a series of parallel basement faults. The sedimentary cover rocks are force folded and may be cut by mountain flank faults which place Precambrian rocks overlying either Paleozoic or Mesozoic rocks. Previously recognized thrusts, blind thrusts, rootless anticlines, and buckle folds in the cover rocks in adjacent basins are reinterpreted to represent thin-skinned deformation related to basement faulting. Where there is relative translation of the cover rocks, cross sections need not balance locally and the fault dips and basement geometries previously determined are in error. The fault dips calculated from locally balanced cross sections have been overestimated, and/or the displacement on the basement fault(s) has been underestimated. The displacement on mountain flank faults may be far less than the total displacement on the basement fault. In the simplest case, it may be possible to project the mountain flank fault down-dip to infer the orientation and location of the basement fault(s) at depth.

SPANG, J. H., and J. P. EVANS, Texas A&M Univ., College Station, TX

Correlation of Twin Creek Limestone with Arapien Shale in Arapien Embayment, Utah—Preliminary Appraisal

Striking and important stratigraphic patterns have emerged as a result of recent work during which members of the Twin Creek Limestone were correlated with the Arapien Shale, all of Middle Jurassic age. These correlations, determined first on the basis of electric and lithologic logs, are supported by recent palynologic work.

Three distinct dinoflagellate assemblages, assigned to the Bajocian(?), Bathonian, and Callovian stages, form the paleontologic basis for these correlations. The Bajocian(?), assemblage is found in rocks of the Sli-derock and Rich Members of the Twin Creek Limestone. The Bathonian assemblage is found in units of the Boundary Ridge and Watton Canyon Members of the Twin Creek, and also in units of the lower Arapien Shale (lower Leeds Creek Member of the Twin Creek of Wyoming). The Callovian assemblage is found in rocks of the upper Arapien (upper Leeds Creek and Giraffe Creek Members of the Twin Creek of Wyoming). Isopach maps, based on these correlations, indicate that most of central Utah was the site of a large marine embayment—the Arapien Embayment—that was flanked on the west, south, and east by highlands. The maps also suggest that the ancestral Uinta Mountains, a submerged feature, affected sedimentation as early as Bajocian time, and became a significant barrier from the late Bathonian through Callovian. In central Utah, marine carbonates were deposited in the Arapien embayment during deposition of the Gypsum Spring through Watton Canyon Members of the Twin Creek Limestone. During deposition of the Arapien Shale, a major northward regression occurred; the embayment shrank to form a smaller basin—the Arapien basin—that lay directly south of the ancestral Uinta Mountains. Most of the Arapien Shale is shallow-water deposits, that formed in the basin under hypersaline conditions.

STAEHL, STEPHEN D., and ROBERT C. SPEED, Northwestern Univ., Evanston, IL

Overstep Thrust Sequence Development in Winnemucca Fold and Thrust Belt, North-Central Nevada

The Sonoma Range lies at the western edge of the Winnemucca fold and thrust belt of north-central Nevada in which lower Paleozoic rocks are thrust westward over para-autochthonous Triassic shelf rocks that overlie Mesozoic autochthonous lower Paleozoic rocks. Evidence from this range indicates that the Winnemucca thrust sequence developed in overstep, rather than piggyback, fashion.

This assertion is based on fabric elements of the Triassic rocks and on the assumption that the style and attitude of a given fold reflect the relative proximity of thrusts at the time of formation of said fold. The data may be summarized as follows: (1) four generations of Winnemucca-age folds are recognized; all are west verging and show the same sense of asymmetry; (2) in succeeding generations, the apical angle of folds increases and axial planes change from nearly horizontal to nearly vertical; (3) also in succeeding generations, deformation becomes more penetrative, and shortening and hinge thickening decrease. If the Winnemucca thrust system were to have developed in piggyback manner, one would expect subsequent deformations to progress from open to tight folds, upright to recumbent folds, and little to much shortening, and to remain relatively uniform in degrees of penetrativeness and thickening in the hinge.

STEARLEY, RALPH F., and A. A. EKDALE, Univ. Utah, Salt Lake City, UT

Bioerosion in Rocky Intertidal Zone of Northern Gulf of California

Pleistocene sedimentary rocks exposed in the intertidal and shallow subtidal zones of the northeastern Gulf of California coastline are being significantly weathered and eroded by a diverse suite of biologic agents. Macroscopic bioerosion of carbonate substrates in this region is universal, although the distribution patterns of particular taxa of borers are patchy.

In the vicinity of Puerto Penasco (Sonora, Mexico), where the tidal range achieves a maximum of 9 m (30 ft), the dominant macroboring organisms include mytilid bivalves (Lithophaga), sipunculid worms (Pholosomaisa and Themiste), and clionid sponges (Cliona). Abundances are locally high (e.g., up to 120 sipunculids per 1,000 m2 of rock). Other prominent but slightly less abundant borers include bryozaans, regular echinoids, and polychaete annelids (eunicids, spionids, and possibly sabellids). Nestlers, which are organisms that occupy and sometimes modify or enlarge preexisting borings, are common. They include bivalves (mainly arcts and peritelmids) and crustaceans (various crabs and shrimps).

Data on the distribution of borers with respect to intertidal microfacies are not sufficient to permit much generalization at this point in the investigation. However, it is clear that substrate character is an important factor: Poorly cemented beachrock (sandstone composed of bioclasts and volcanic rocks fragments) is bored intensely by bivalves and sipunculids. Limestone coquina is colonized by dense populations of boring bivalves and sponges. Loose shell material commonly contains borings of sponges and polychaetes.

To determine bioerosion rates and colonization sequences of boring taxa, experiments with marble slabs stuck out at numerous sites are in progress.

STEVENSON, GENE M., Consultant, Denver, CO, and DON L. BAARS, Consultant, Evergreen, CO

Paradox Basin: A Model Full-Aperture Basin of Pennsylvanian Age

The Paradox basin of the east-central Colorado Plateau province is an elongate, roughly rhombic salt basin of Middle Pennsylvanian age. It is bounded on the northeast by the Uncompahgre-San Luis segments of the Ancestral Rockies. The writers have demonstrated previously that the
basin sagged along basement rift zones by strong east-west extension during the Desmoinesian. The dominant zone of weakness was the northwest-trending Olympic-Wichita basement lineament that lies along the eastern margin of the Paradox salt basin and the southwestern edge of the Uncompaghre-San Luis uplifts. Less prominent northwest and northeastern shear zones are ubiquitous, but are especially well developed in basement and Paleozoic rocks underlying the San Juan basin at the southeast termination of the Paradox basin.

J. C. Crowell's classic model of a pull-apart basin along anastomosing transform fault zones is directly applicable to the Paradox basin, with the one exception that the Paradox is an intracratonic basin developed on continental crust. The primary zone of weakness, the Olympic-Wichita lineament, marks the abrupt eastern margin of the basin. The southwestern margin is less well defined along a broad zone of basement faults that trend northwesterly across the San Juan basin, through the southern margin of the salt basin, across the Monument upwarp at the anomalous Fish Creek structure and the Mille Crag Bend fracture zone, and on to the northwest through the Henry Mountains intrusives and the Fremont sag.

The northwest termination is the expected irregular compressional (convergent) margin at the Emery uplift (San Rafael swell), and the southeastern limit of the basin is an irregular margin of normal faults and stretched attenuated floor (divergence) lying between the Hogback monoclone and the House Creek fault. The complex intersections lying at the rhombic corners of the basin are in the San Juan Mountains on the southeast, the Defiance uplift on the southwest, the Fremont sag on the northwest, and the Cenith sag on the northeast.

As the Paradox basin episodically deepened during the Middle Pennsylvanian by rejuvenation of basement faults, it was being filled contemporaneously with salt, which may have reached a thickness of 6,000-8,000 ft (1,800-2,400 m), and arkoses of 15,000-20,000 ft (4,600-6,100 m) thickness along the Uncompahgre front. A pull-apart of only about 5% of extension would account for a basin of this magnitude. By about mid-Desmoinesian time, the wrenching pull-apart was nearly completed. Folding caused by minor wrench movements formed shoaling conditions along the southwest shallow shelf of the basin where algal bioturbations developed. Meanwhile, pull-apart stretching of the basin floor may have triggered salt flowage and diapirism in the eastern, deepest part of the basin. From the late Desmoinesian through Permian, the basin filled with marine and nonmarine sediments as the wrench tectonism subsided.


Radio Imaging Method (RIM) Used to Map Coal Seam Thickness Within Developed Longwall Panels

Modern underground coal mines commonly employ retreating longwall mining techniques to increase productivity and resource recovery and decrease mining cost. Although longwall mining is generally the most efficient method used today, its effectiveness can be impaired by intersecting localized areas of coal thinner than the minimum mining height of the equipment.

Coal seams within western coalfields are generally lenticular. Localized areas of thin coal overlain by fluvial sandstone deposits that are scoured into the coal are common on many properties and may be encountered by retreating longwall. This can severely impact productivity and degrade the run of mine coal quality.

The use of Radio Imaging Method (RIM) is being tested to map coal seam thickness within a developed longwall panel. Although coal seams are poor electrical conductors, electromagnetic signals can be transmitted through the coal within a longwall panel. These signals are attenuated as they pass through the longwall panel. The degree of attenuation for a given distance of signal travel is largely a function of the coal seam height. This relationship enables RIM to detect changes in coal seam height within a longwall panel that may or may not be evident from the development entries.

Initial testing of RIM in a few developed longwall panels has proved successful in identifying at least three areas of thin coal that were later confirmed by drilling and mining.

STONE, DONALD S., Sherwood Exploration Co., Denver, CO

Greybull Sandstone Pool (Lower Cretaceous) on Elk Basin Thrust-Fold Complex, Wyoming and Montana

The Elk Basin field in the northern Bighorn basin is a giant structural trap with cumulative production surpassing 500 million bbl, principally from a Paleozoic common pool. Abundant well data and seismic information have been used in a stratigraphic and structural study focusing on the Greybull (Lower Cretaceous) gas pool and on deeper formations along this structural complex. These data support an interpretation of the Elk Basin field as a thrust-fold complex, underlain by a listric thrust fault zone which probably emanates from Precambrian basement at an angle of 45° or less. The fault steepens upward and dies out in steeply dipping Mesozoic clastics that are attenuated and cut by extensional faults at the surface.

The little known Greybull Sandstone pool at Elk Basin field, which is now used for gas storage, was discovered in 1920, and contained estimated primary recoverable reserves of 34 bcf of gas at an average depth of about 2,500 ft (760 m). The Greybull lies stratigraphically between the Dakota and Morrison Formations, and is composed of two distinct sandstone units, called "A" and "B" at the North Clark's Fork Field in southern Montana. The lower "B" unit at Elk Basin is a fluvial river-channel deposit which ranges up to 150 ft (45 m) in thickness and nearly 2 mi (3 km) in width. The upper "A" unit is a series of shoreline sandstone deposits oriented northwest-southeast. Individuals, porous "A" sandstone bodies range from a few feet to more than 20 ft (6 m) in thickness at Elk Basin. These two Greybull Sandstone units are part of a common gas pool covering about 2,000 acres (800 ha) of the crestal closure of the Elk Basin anticline. Seismic modeling indicates that Greybull Sandstone channels over 60 ft (18 m) thick may be detected by reflection character changes in CDP seismic data.

TEERMAN, STANLEY C., Chevron Oil Field Research Co., La Habra, CA, and JOHN C. CRELLING*, Southern Illinois Univ., Carbondale, IL

Petrography and Fluorescence Spectral Analysis of Resinite Macerals from Coals of Hanna Basin, Wyoming

Petrographic analysis of coals of the Ferris and Hanna Formations of Wyoming show these coals to have a high total vitrinite content (average 84.2%) and a modest liptinite content (average 5.9%). Compared to coals of similar rank (0.45-0.55% reflectance) from central Utah, these coals have about twice as much pseudovitrinite and about half as much total liptinite. Although sporinite is generally the most abundant type of lipitinite maceral, resinite and sporinite occur in about equal amounts in these Wyoming coals, and resinite greatly exceeds sporinite in the central Utah coals.

Results of fluorescence spectral analysis of resinite macerals in the Wyoming coals show that there are five distinct resinite types present. Four types occur in primary globular forms exhibiting scratches and fractures indicating a brittle solid substance. In places, these four types also occur as secondary fracture fillings. Two of the four types fluoresce with a green color; one a dark green peaking at less than 440 nm and the other a yellow-green peaking at 500 nm. The third type fluoresces yellow and peaks at 580 nm, and the fourth type fluoresces orange-brown and peaks at 610 nm. These yellow and orange-brown resinites are similar to those found in central Utah coals except that the Wyoming resinites peak 30-40 nm higher. In the Utah coals, only one green resinite peaks at 460 nm; however, its spectrum has a shoulder at 470-490 nm. The fifth resinite type fluoresces a red-brown and peaks at 690 nm. It occurs only as a void-filling substance showing no brittle properties. It is indistinguishable from a similar resinite type in the central Utah coals.

TETTING, THOMAS N., Utah Division Oil, Gas, & Mining, Salt Lake City, UT

Origin of Gilsonite Fractures in Uinta Basin, Utah

The concept of gilsonite fracture and vein evolution is still, by nature, a theoretical argument. A historical review presented with recent observations and conclusions divides this period of origin into five stages of for-