About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract


Volume: 78 (1994)

Issue: 12. (December)

First Page: 1811

Last Page: 1819

Title: Detection of Zones of Abnormal Strains in Structures Using Gaussian Curvature Analysis

Author(s): Richard J. Lisle (2)

Abstract:

Whereas some folds, such as those produced by flexural slip, do not theoretically entail strain within the folded surfaces, any surface involving double curvature (such as domes and saddles) cannot form without some stretching or contraction of the bedding. Whether straining of the surfaces is required during folding depends on the three-dimensional fold shape and, in particular, on the Gaussian curvature at points on the folded surface. Using this as a basis, I present a method for detecting zones of anomalously high strain in oil-field structures from Gaussian curvature analysis (GCA) of natural structures. The new method of GCA is suitable for analyzing surfaces that have been mapped seismically. A Gaussian curvature map of the structure is a principal outcome of the a alysis and can be used to predict the density of strain-related subseismic structures, such as small-scale fracturing. The Goose Egg dome, near Casper, Wyoming, is analyzed and provides an example of GCA. In this structure, a relationship is observed between fracture densities and Gaussian curvature.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Member username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].