About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract


Volume: 80 (1996)

Issue: 10. (October)

First Page: 1565

Last Page: 1585

Title: Estimating Average Fracture Spacing in Subsurface Rock

Author(s): Wayne Narr (2)

Abstract:

Knowledge of the spacing of fractures in reservoir rocks (i.e., the distance between parallel fractures in a subsurface joint set) can lead to a better understanding of the production characteristics of a reservoir and serve to quantify the relative degree of deformation in subsurface rocks. In this paper, I present a new method for estimating the spacing of subsurface fractures; this new method is easy to use from the standpoint of both data collection and data analysis.

The average fracture spacing method can be applied with boreholes of any orientation relative to a fracture set. The method is especially powerful when it is used for the relatively common case of a borehole nearly parallel to a fracture set (e.g., vertical borehole intersecting vertical fractures). Average fracture spacing is estimated from an analytical solution based on observed borehole-fracture intersections and observed fracture porosity; the only data required are the dimensions of the core (or imaged borehole) and the total height of all sampled fractures.

Because the likelihood of intersecting fractures increases when a well is deviated perpendicular to the fractures of a set, fracture reservoirs commonly are candidates for deviated boreholes. An informed decision on borehole deviation requires predicting the fracture intersection frequency as a function of both deviation magnitude and direction. A new method, based on probabilities of borehole-fracture intersections, uses spacing and height data from subsurface joint-like fractures and the borehole diameter to predict fracture intersection frequencies for all possible well deviations. Fracture intersection frequency solutions are presented with respect to a conventional geographic reference frame, thus simplifying even the most complex three-dimentional situations.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Member username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].