About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract

AAPG Bulletin, V. 82 (1998), No. 12 (December 1998), P. 2192-2219.

Approaches to Identifying Reservoir Heterogeneity and Reserve Growth Opportunities in a Continental-Scale Bed-Load Fluvial System: Hutton Sandstone, Jackson Field, Australia1

Douglas S. Hamilton,2 Mark H. Holtz,2 Philip Ryles,3 Tom Lonergan,3 and Michael Hillyer3

©Copyright 1998.  The American Association of Petroleum Geologists.  All Rights Reserved

1Manuscript received December 24, 1996; revised manuscript received March 2, 1998; final acceptance March 21, 1998.
2Bureau of Economic Geology, University of Texas at Austin.
3Santos Ltd., Brisbane, Queensland, Australia.

Abstract

We applied an integrated geologic and engineering approach devised to identify heterogeneities in the subsurface that might lead to reserve growth opportunities in our analysis of the Hutton Sandstone at Jackson field, Eromanga basin, Australia. Our approach involves four key steps: (1) determine geologic reservoir architecture, (2) investigate trends in reservoir fluid flow, (3) integrate fluid-flow trends with reservoir architecture, and (4) estimate original oil in place, residual oil saturation, and remaining mobile oil to identify opportunities for reserve growth.

Although the Hutton reservoir is interpreted as the deposit of a continental-scale bed-load fluvial system and is dominated by highly permeable sandstone, the genetic stratigraphic analysis identified numerous thin, but widespread, shale units deposited during lacustrine flooding that periodically interrupted episodes of coarse clastic Hutton deposition. These shales represent chronostratigraphically significant surfaces, but more importantly, the trends in reservoir fluid flow, established from monitoring aquifer encroachment, production response to water shut-off workovers, and differential depletion in repeat formation tests, indicate that these shale units act as efficient barriers to vertical fluid flow. Erosion of the upper part of the Hutton reservoir by the younger Birkhead mixed-load fluvial system caused further stratigraphic complexities, introducing additional barriers to vertical and lateral migration of mobile oil and aquifer encroachment. These stratigraphic complexities were not fully appreciated in previous field development and production strategies, and the potential exists for incremental reserve growth through geologically targeted infill drilling and recompletions. 

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Member username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].