About This Item
- Full TextFull Text(subscription required)
- Pay-Per-View PurchasePay-Per-View
Purchase Options Explain
Share This Item
The AAPG/Datapages Combined Publications Database
AAPG Bulletin
Abstract
AAPG Bulletin, V.
1Manuscript received June 24, 1998;
revised manuscript received May 25, 1999; final acceptance May 27, 1999.
2Shell Research and Technical Services
B.V., Rijswijk, The Netherlands. Present address: Abu Dhabi Company for
Onshore Oil Operations (ADCO), P.O. Box 270, Abu Dhabi, United Arab Emirates;
e-mail: jgrotsch@ emirates.net.ae
3Shell Philippines Exploration and
Production, Manila, Philippines. Present address: NAM B.V. BUO-ODP/1, De
Brauwweg 80, 3100 AA Schiedam, The Netherlands; e-mail: c.g.l.mercadier@openmail.odp1.namsdm.
simis.com
ABSTRACT
A modeling functionality was developed to allow development of multiple-scenario 3-D reservoir models in an exploration or appraisal stage. The model enables merging of seismic-scale observations based on 3-D volume and horizon analyses with subseismic scale information from well data; however, inherent noise within the seismic data introduced by the complex buildup morphology has resulted in inconsistent attribute distribution and fault dimming. These difficulties are compounded by erratic velocity distribution within the limestone, nonhyperbolic move out, and a narrow relatively low-frequency spectrum, all of which prevent the use of the 3-D seismic volume as hard data but rather allow its use as a soft constraint for guiding the geological interpretation and ultimately the modeling process. Seismic data quality in such complex morphologic settings and scarcity of well data hamper greatly the use of geostatistically driven modeling approaches; therefore, a new functionality was developed within Shell's proprietary integrated 3-D modeling suite (GEOCAP), which allows deterministic model reservoirs using seismic horizon and volume interpretation, sequence- and cyclo-stratigraphic architecture, and the concept of reservoir rock type.
Seismic velocity in clean carbonate formations is predominantly a function of porosity distribution. To assess time-to-depth conversion uncertainty, the reservoir rock type based models were first produced in the time domain. Only after differential 3-D depth conversion of these models could the scenarios be reconstructed in the depth domain. The depth models subsequently were used to derive permeability and saturation 3-D distortions, and thus hydrocarbon volumes for each deterministic scenario. The models were then used for simulation purposes.
Pay-Per-View Purchase Options
The article is available through a document delivery service. Explain these Purchase Options.
Watermarked PDF Document: $14 | |
Open PDF Document: $24 |
AAPG Member?
Please login with your Member username and password.
Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at members@aapg.org.