About This Item
- Full TextFull Text(subscription required)
- Pay-Per-View PurchasePay-Per-View
Purchase Options Explain
Share This Item
The AAPG/Datapages Combined Publications Database
AAPG Bulletin
Abstract
AAPG Bulletin, V.
DOI:10.1306/03060604088
Reactivation of pressure-solution seams by a strike-slip fault-sequential, dilational jog formation and fluid flow
A. John Watkinson,1 E. M. Geraghty Ward2
1Department of Geology, Washington State University, P.O. Box 642812, Webster 1228, Pullman, Washington 99164-2812; [email protected]
2Department of Geology, University of Montana, 32 Campus Drive 1296, Missoula, Montana 59812-1296; [email protected]
ABSTRACT
This work examines how older pressure-solution seams become sheared or reactivated by slip because of movement on a younger fault segment. The reactivation then leads to the creation of secondary structures. These are followed by further changes in the local stress-strain field that result in slip reactivation on the secondary structures and in the creation of third-order structures. This sequence of deformation reflects and reveals transient changes in the stress-strain field along the margins of the fault during active slip on the fault. The reactivation may lead to enhanced rock permeability and/or porosity that allow for temporary periods of fluid movement. Thus, we believe that this serves as an important model to contribute to the understanding of movement of fluids such as oil and gas around active faults.
Pay-Per-View Purchase Options
The article is available through a document delivery service. Explain these Purchase Options.
Watermarked PDF Document: $14 | |
Open PDF Document: $24 |
AAPG Member?
Please login with your Member username and password.
Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].