About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract

AAPG Bulletin, V. 90, No. 11 (November 2006), P. 1641-1690.

Copyright copy2006. The American Association of Petroleum Geologists. All rights reserved.

DOI:10.1306/05220605164

Structurally controlled Previous HithydrothermalNext Hit dolomite reservoir facies: An overview

Graham R. Davies,1 Langhorne B. Smith Jr.2

1Graham Davies Geological Consultants (GDGC) Ltd., Alastair Ross Technology Center, 3553-31 Street NW, Calgary, Alberta, Canada, T2L 2K7; [email protected]
2Reservoir Characterization Group, New York State Museum, Room 3140 CEC, Albany, New York 12230; [email protected]

ABSTRACT

Structurally controlled Previous HithydrothermalNext Hit dolomite (HTD) reservoir facies and associated productive leached limestones are major hydrocarbon producers in North America and are receiving increased exploration attention globally. They include multiple trends in the Ordovician (locally, Silurian and Devonian) of the Michigan, Appalachian, and other basins of eastern Canada and the United States, and in the Devonian and Mississippian of the Western Canada sedimentary basin. They also occur in Jurassic hosts along rifted Atlantic margins, in the Jurassic–Cretaceous of the Arabian Gulf region and elsewhere.

Previous HitHydrothermalNext Hit dolomitization is defined as dolomitization occurring under burial conditions, commonly at shallow depths, by fluids (typically very saline) with temperature and pressure (T and P) higher than the ambient T and P of the host formation. The latter commonly is limestone. Proof of a Previous HithydrothermalNext Hit origin for HTD reservoir facies requires integration of burial-thermal history plots, fluid-inclusion temperature data, and constraints on timing of emplacement. Previous HitHydrothermalNext Hit dolomite reservoir facies are part of a spectrum of Previous HithydrothermalNext Hit mineral deposits that include sedimentary-exhalative lead-zinc ore bodies and HTD-hosted Mississippi Valley–type sulfide deposits. All three Previous HithydrothermalNext Hit deposits show a strong structural control by extensional and/or strike-slip (wrench) faults, with fluid flow typically focused at transtensional and dilational structural sites and in the hanging wall. Transtensional sags above negative flower structures on wrench faults are favored drilling sites for HTD reservoir facies.

Saddle dolomite in both replacive and void-filling modes is characteristic of HTD facies. For many reservoirs, matrix-replacive dolomite and saddle dolomite appear to have formed near-contemporaneously and from the same fluid and temperature conditions. The original host facies exerts a major influence on the lateral extent of dolomitization, resultant textures, pore type, and pore volume. Breccias, zebra fabrics, shear microfractures, and other rock characteristics record short-term shear stress and pore-fluid-pressure transients, particularly proximal to active faults. High-temperature Previous HithydrothermalTop pulses may alter kerogen in host limestones, a process designated “forced maturation.” Basement highs, underlying sandstone (and/or carbonate?) aquifers (probably overpressured), and overlying and internal shale seals and aquitards also may constrain or influence HTD emplacement.

Although many questions and uncertainties remain, particularly in terms of Mg and brine source and mass balance, recognition and active exploration of the HTD play continues to expand. Increasing use of three-dimensional seismic imagery and seismic anomaly mapping, combined with horizontal drilling oblique to linear trends defined by structural sags, helps to reduce risk.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Member username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].